Colloquium ITA Universität Heidelberg

Hydrostatic Planetary Models from the Point of View of Dynamical Systems

Johannes Schönke

Outline

- Model and [Equations](#page-2-0)
- The [Isothermal](#page-7-0) Case
- The Polytropic [Generalisation](#page-14-0)
- Application: [Understanding](#page-21-0) of Mass Spectra Predictions
- [Stability](#page-26-0)

- The [Isothermal](#page-7-0) Case
-
- Application: [Understanding](#page-21-0) of Mass Spectra Predictions
- [Stability](#page-26-0)

general assumption

spherical symmetry

assumptions

core

- solid body
- constant density ρ_c
- characteristic quantity: $M_c = M(r_c)$

envelope

- hydrostatic equilibrium
- ideal gas
- polytropic relation
- \circ extends to Hill radius
- \cdot characteristic quantity: $\rho_0 = \rho(r_c)$

connections between polytropic and isentropic relations

polytropic relation
\n
$$
\frac{P}{P_0} = \left(\frac{\rho}{\rho_0}\right)^{\gamma} \qquad \left(\frac{d \ln T}{d \ln P}\right)_S = \nabla \iff \frac{T}{T_0} = \left(\frac{P}{P_0}\right)^{\nabla}
$$
\nequivalent descriptions in case of ideal gas
\nideal gas:
$$
\frac{P}{P_0} = \frac{T}{T_0} \frac{\rho}{\rho_0} \iff \nabla = 1 - \frac{1}{\gamma}
$$

parameters for all examples

general

- \degree core density $\varrho_{\rm c} = 5500 \, \rm kg \, \rm m^{-3}$
- $\,\circ\,$ star mass $M_\star = M_\odot$
- \degree atomic mass $m = 4.12 \cdot 10^{-27} \text{kg}$ $(X = 0.76, Y = 0.24$, molecular form)

Jovian region

- \circ nebula temperature $T_{\rm H} = 123\,\rm K$ (cf. [Hayashi et al. 1985])
- \degree orbital distance $a=5.2$ AU
- Model and [Equations](#page-2-0)
- The Isothermal Case
- The Polytropic [Generalisation](#page-14-0)
- Application: [Understanding](#page-21-0) of Mass Spectra Predictions
- [Stability](#page-26-0)

isothermal
$$
\rightarrow \nabla = 0, \gamma = 1
$$

\n
$$
\frac{d\varphi}{ds} = \psi - \varphi \qquad (\varphi \sim M/r)
$$
\n
$$
\frac{d\psi}{ds} = \psi(2 - \varphi) \qquad (\psi \sim r^2 \rho)
$$
\nradial density profiles

equivalence between critical lines in different graphical representations

Example:
$$
\psi = \varphi \Rightarrow \rho = \frac{M}{4\pi r^3} = \frac{\langle \rho \rangle}{3} \Rightarrow
$$
 core surface: $\rho_0 = \frac{\rho_c}{3}$

useful applications of the description with homology invariants

properties of the different regions

- formulas for radial mass and density profiles
- \sim dependencies like $M_{\rm env}(M_{\rm c},\rho_{\rm 0})$ or $\rho_{\rm H}(M_{\rm c},\rho_{\rm 0})$
- clear physical approximations, e.g. region II: $\psi \gg \varphi$ at core surface

analytic descriptions of borders between regions

- Which core mass has a significant gravitational influence?
- When self-gravity overcomes the core potential?
- Where is the critical core mass?

$$
\left[\text{e.g.:} \quad M_{\text{c}}^{\text{crit}} = \left(\frac{3}{4 \pi \varrho_{\text{c}}} \right)^{\frac{1}{2}} \left(\frac{kT}{Gm} \ln \frac{4 \pi a^3 \varrho_{\text{c}}}{27 M_\star} \right)^{\frac{3}{2}} \right]
$$

- Model and [Equations](#page-2-0)
- The [Isothermal](#page-7-0) Case
- The Polytropic Generalisation
- Application: [Understanding](#page-21-0) of Mass Spectra Predictions
- [Stability](#page-26-0)

general remarks

polytropes

- two important temperature gradients: $\nabla_{rad}(P, T, \kappa, L)$ and $\nabla_{ad}(P, T)$
- **thermodynamics:** $\nabla_{\text{ad}} = 0...2/5$
- Schwarzschild-criterion: $\nabla = \min(\nabla_{\text{rad}}, \nabla_{\text{ad}})$
- $\sigma \Rightarrow \nabla(r)$ is "some" function, varying between $0...2/5$! $[\gamma(r)=1...5/3]$

temperature

- not constant \Rightarrow $T(r)$
- choice of boundary condition: T_0 or T_H ?

comments

- new topology (after bifurcation at $\nabla=0$)
- "isothermal" part
- "compact" part
- \circ separatrix

general analytic form of the separatrix

$$
\psi_{\rm sep}(\varphi) = -\frac{1}{2} \left(\varphi - \frac{2}{1 - 2\nabla} \right)^2 + \frac{1}{2} \left(\frac{1 - 4\nabla}{\nabla (1 - 2\nabla)} \right)^2
$$

comments

- integrable, conservative system
- \rightarrow constant of "motion"
- "periodic" part (elliptic functions)
- "compact" part
- last appearance of a separatrix
- bifurcation point

constant of "motion"

$$
77? \qquad C(\psi,\varphi) = \psi^{\frac{1}{2}} (2\psi - 6\varphi + \varphi^2) \qquad ?7?
$$

comments

- again new topology (after bifurcation at $\overline{V}=1/6$
- \circ equilibrium point becomes unstable
- all profiles become compact
- no separatrix

comments

- \cdot equilibrium point is lost
- profiles become compact faster and faster
- no more qualitative changes till $\nabla = 2/5$

Analytic descriptions of occurring structures can be given in analogy to the isothermal case

- Model and [Equations](#page-2-0)
- The [Isothermal](#page-7-0) Case
-

[Stability](#page-26-0)

excursion: a more realistic model [Broeg 2006]

- realistic, tabulated eos
- core luminosity due to accretion of planetesimals
- radiative transfer (diffusion approximation) with tabulated opacities
- convection (Schwarzschild criterion) with tabulated $\nabla_{\rm ad}$

computing $M_{tot}(M_c, \rho_0) \Rightarrow$ log-equidistant (scale free) grid \Rightarrow count

W

 \Rightarrow mass spectrum, valid with the following assumptions:

 \circ all states equiprobable (stability?! \rightarrow cf. last section)

all states form quasi-static (otherwise: valid for pre-dynamic phase)

Abbildung 4.1: Das Massenspektrum für Jupiters Position. Es zeigt die Anzahl von Modellen bzw. die relative Häufigkeit aller Gleichgewichtszustände pro Massenintervall $d\lg M_{\rm tot}$ als Funktion der Gesamtmasse lg M_{tot} . Die beiden vertikalen roten Linien markieren die Position einer Erdmasse, M_{Δ} , bzw. einer Jupitermasse, M_{Δ} .

Das Massenspektrum von Jupiter hat offenbar einen deutlichen Peak bei lg $M \sim 26.7$. Um die Positionen der unter Umständen mehreren Maxima quantifizieren zu können, werde ich stets zwei Größen bestimmen: den Modus und den Median der Anzahlhäufigkeiten.¹

Im dem hier vorgestellten Beispiel gibt es nur ein Maximum, welches stark auf Null abfällt: Modus: 26,878 (0,001), Median: 26,814 (26,52-28).² Dies entspricht 0,40 bzw. 0,35 M₂. Insge-

analytical comprehension of the characteristic mass peak

peak corresponds to characteristic mass in region IV (the "island")

∈ island \iff ∈ attractor \iff outer envelope parts have ∇ < 1/6

 \Rightarrow mean total mass in region IV is determined by the attractor

$$
\langle M_{\rm tot}^{\rm IV} \rangle = M_{\rm peak} = \left(\frac{3\,k\,T_{\rm H}\,a}{Gm\,(3M_\star)^{\frac{1}{3}}} \right)^{\frac{3}{2}} =
$$

numerical results [Broeg 2006]: $M_{\rm peak}^{\rm Broeg} = 0.35\,M_\odot$ (median) or $0.40\,M_\odot$ (modus)

analytical comprehension of the characteristic mass peak

peak corresponds to characteristic mass in region IV (the "island")

∈ island \iff ∈ attractor \iff outer envelope parts have ∇ < 1/6

 \Rightarrow mean total mass in region IV is determined by the attractor

$$
\langle M_{\rm tot}^{\rm IV} \rangle = M_{\rm peak} = \left(\frac{3\,k\,T_{\rm H}\,a}{Gm\,(3M_\star)^{\frac{1}{3}}} \right)^{\frac{3}{2}} = \, 0.375\,M_\odot
$$

numerical results [Broeg 2006]: $M_{\rm peak}^{\rm Broeg} = 0.35\,M_\odot$ (median) or $0.40\,M_\odot$ (modus)

- Model and [Equations](#page-2-0)
- The [Isothermal](#page-7-0) Case
- The Polytropic [Generalisation](#page-14-0)
- Application: [Understanding](#page-21-0) of Mass Spectra Predictions

Stability

Stability

linear stability analysis

introducing perturbations of the form $\rho(r,t) = \rho_{\text{static}}(r) + \delta \rho(r) e^{i\omega t}$ $\overline{M(r,t)} = M_{\text{static}}(r) + \delta \overline{M(r)} e^{i\omega t}$

 \Rightarrow Eigenvalue problem for δM with Eigenvalues ω_n^2 and Eigenfunctions $\delta\! M_n(r)$

 \Rightarrow sign of the smallest Eigenvalue ω_0^2 decides about stability

Stability

envelope mass and border of stability for $\nabla = 1/8$ ($\gamma = 8/7$), fixed $T_{\rm H}$

Conclusions

- A clear description of core-envelope structures is possible with the help of the two homology invariants φ and ψ .
- \circ There are two basic behaviours of trajectories in the φ ψ space: 1. approach of certain fixed values (attractor) 2. $\psi \rightarrow 0$ (compact).
- \circ Fundamental changes occur for $\nabla=0$ (isothermal) and $\nabla=1/6$.
- Characteristic physical quantities, e.g. the critical core mass, can be given analytically.
- Main peak in mass spectra can be understood.
- Structures near the attractor appear to be unstable.

Thanks for your attention!

(japanese cat paying attention)

