Colloquium ITA Universität Heidelberg

Hydrostatic Planetary Models from the Point of View of Dynamical Systems

Johannes Schönke

Outline

- 1 Model and Equations
- 2 The Isothermal Case
- 3 The Polytropic Generalisation
- 4 Application: Understanding of Mass Spectra Predictions
- 5 Stability

- 2 The Isothermal Case
- 3 The Polytropic Generalisation
- 4 Application: Understanding of Mass Spectra Predictions
- 5 Stability

general assumption

spherical symmetry

assumptions

core

- solid body
- ullet constant density $arrho_{
 m c}$
- characteristic quantity: $M_{\rm c} = M(r_{\rm c})$

envelope

- hydrostatic equilibrium
- ideal gas
- polytropic relation
- extends to Hill radius
- characteristic
 - quantity: $ho_0 =
 ho(r_{
 m c})$

Johannes Schönke (ITP Uni-Bremen)

Hydrostatic Planetary Models

December 13, 2006 3 / 8

connections between polytropic and isentropic relations

polytropic relationisentropic relation
$$\frac{P}{P_0} = \left(\frac{\rho}{\rho_0}\right)^{\gamma}$$
 $\left(\frac{d\ln T}{d\ln P}\right)_S = \nabla$ \Leftrightarrow $\frac{T}{T_0} = \left(\frac{P}{P_0}\right)^{\nabla}$ equivalent descriptions in case of ideal gasideal gas: $\frac{P}{P_0} = \frac{T}{T_0}\frac{\rho}{\rho_0}$ \Rightarrow $\nabla = 1 - \frac{1}{\gamma}$

Johannes Schönke (ITP Uni-Bremen)

Johannes Schönke (ITP Uni-Bremen)

parameters for all examples

general

- core density $arrho_{
 m c}=5500\,{
 m kg\,m^{-3}}$
- star mass $M_{igstar}=M_{\odot}$

atomic mass
$$m = 4.12 \cdot 10^{-27} \mathrm{kg}$$
 $(X = 0.76$, $Y = 0.24$, molecular form)

Jovian region

- $\circ\,$ nebula temperature $T_{
 m H}=123\,{
 m K}$ (cf. [Hayashi et al. 1985])
- orbital distance $a = 5.2 \,\mathrm{AU}$

- 1 Model and Equations
- 2 The Isothermal Case
- 3 The Polytropic Generalisation
- 4 Application: Understanding of Mass Spectra Predictions
- 5 Stability

Johannes Schönke (ITP Uni-Bremen)

isothermal
$$\rightarrow \nabla = 0, \gamma = 1$$

 $\frac{d\varphi}{ds} = \psi - \varphi \qquad (\varphi \sim M/r)$
 $\frac{d\psi}{ds} = \psi(2 - \varphi) \qquad (\psi \sim r^2 \rho)$
radial density profiles

Johannes Schönke (ITP Uni-Bremen)

Johannes Schönke (ITP Uni-Bremen)

isothermal
$$\rightarrow \nabla = 0, \gamma = 1$$

$$\frac{d\varphi}{ds} = \psi - \varphi \qquad (\varphi \sim M/r)$$

$$\frac{d\psi}{ds} = \psi(2 - \varphi) \qquad (\psi \sim r^2 \rho)$$
radial density profiles

S 4

5

Johannes Schönke (ITP Uni-Bremen)

2 3

-6 -

Ó

equivalence between critical lines in different graphical representations

Example:
$$\psi = \varphi \Rightarrow \rho = \frac{M}{4\pi r^3} = \frac{\langle \rho \rangle}{3} \Rightarrow$$
 core surface: $\rho_0 = \frac{\rho_c}{3}$

Johannes Schönke (ITP Uni-Bremen)

Hydrostatic Planetary Models

December 13, 2006 4 / 8

useful applications of the description with homology invariants

properties of the different regions

- formulas for radial mass and density profiles
- dependencies like $M_{
 m env}(M_{
 m c},
 ho_0)$ or $ho_{
 m H}(M_{
 m c},
 ho_0)$
- clear physical approximations, e.g. region II: $\psi \gg \varphi$ at core surface

analytic descriptions of borders between regions

- Which core mass has a significant gravitational influence?
- When self-gravity overcomes the core potential?
- Where is the critical core mass?

$$\begin{bmatrix} \mathsf{e.g.:} & M_{\mathrm{c}}^{\mathrm{crit}} = \left(\frac{3}{4\pi\varrho_{\mathrm{c}}}\right)^{\frac{1}{2}} \left(\frac{kT}{Gm}\ln\frac{4\pi a^{3}\varrho_{\mathrm{c}}}{27M_{\bigstar}}\right)^{\frac{3}{2}} \end{bmatrix}$$

Johannes Schönke (ITP Uni-Bremen)

IV

- 1 Model and Equations
- 2 The Isothermal Case
- 3 The Polytropic Generalisation
- 4 Application: Understanding of Mass Spectra Predictions
- 5 Stability

general remarks

polytropes

- two important temperature gradients: $abla_{\mathrm{rad}}(P,T,\kappa,L)$ and $abla_{\mathrm{ad}}(P,T)$
- thermodynamics: $abla_{\mathrm{ad}}=0...2/5$
- Schwarzschild-criterion: $abla = \min(
 abla_{rad},
 abla_{ad})$
- \Rightarrow $\nabla(r)$ is "some" function, varying between 0...2/5 ! $[\gamma(r) = 1...5/3]$

temperature

- not constant \Rightarrow T(r)
- choice of boundary condition: T_0 or $T_{\rm H}$?

comments

- new topology (after bifurcation at $\nabla = 0$)
- "isothermal" part
- "compact" part
- separatrix

general analytic form of the separatrix

$$\psi_{\rm sep}(\varphi) = -\frac{1}{2} \left(\varphi - \frac{2}{1-2\nabla}\right)^2 + \frac{1}{2} \left(\frac{1-4\nabla}{\nabla(1-2\nabla)}\right)^2$$

Johannes Schönke (ITP Uni-Bremen)

comments

- integrable, conservative system
- \Rightarrow constant of "motion"
- "periodic" part (elliptic functions)
- "compact" part
- last appearance of a separatrix
- bifurcation point

?7

constant of "motion"

?
$$C(\psi, \varphi) = \psi^{\frac{1}{2}} \left(2\psi - 6\varphi + \varphi^2 \right)$$

Johannes Schönke (ITP Uni-Bremen)

comments

- again new topology (after bifurcation at $\nabla = 1/6$)
- equilibrium point becomes unstable
- all profiles become compact
- no separatrix

comments

- equilibrium point is lost
- profiles become compact faster and faster
- no more qualitative changes till $\nabla = 2/5$

Analytic descriptions of occurring structures can be given in analogy to the isothermal case

Johannes Schönke (ITP Uni-Bremen)

Hydrostatic Planetary Models

December 13, 2006 5 / 8

- 1 Model and Equations
- 2 The Isothermal Case
- 3 The Polytropic Generalisation

5 Stability

excursion: a more realistic model [Broeg 2006]

- realistic, tabulated eos
- core luminosity due to accretion of planetesimals
- radiative transfer (diffusion approximation) with tabulated opacities
- $\,\circ\,$ convection (Schwarzschild criterion) with tabulated $abla_{
 m ad}$

computing $M_{\rm tot}(M_{\rm c},\rho_0)$ \Rightarrow log-equidistant (scale free) grid \Rightarrow count

 \Rightarrow mass spectrum, valid with the following assumptions:

• all states equiprobable (stability?! \rightarrow cf. last section)

all states form quasi-static (otherwise: valid for pre-dynamic phase)

Johannes Schönke (ITP Uni-Bremen)

Abbildung 4.1: Das Massenspektrum für Jupiters Position. Es zeigt die Anzahl von Modellen bzw. die relative Häufigkeit aller Gleichgewichtszustände pro Massenintervall $d \lg M_{\rm tot}$ als Funktion der Gesamtmasse lg $M_{\rm tot}$. Die beiden vertikalen roten Linien markieren die Position einer Erdmasse, M_A , bzw. einer Jupitermasse, M_A .

Das Massenspektrum von Jupiter hat offenbar einen deutlichen Peak bei $gM \sim 26,7$. Um die Positionen der unter Umständen mehreren Maxima quantifizieren zu können, werde ich stets zwei Größen bestimmen: den Modus und den Median der Anzahlhäufigkeiten.¹

Im dem hier vorgestellten Beispiel gibt es nur ein Maximum, welches stark auf Null abfällt: Modus: 26,878 (0,001), Median: 26,814 (26,52-28).² Dies entspricht 0,40 bzw. 0,35 Mq. Insge-

analytical comprehension of the characteristic mass peak

peak corresponds to characteristic mass in region IV (the "island")

 \in island \iff \in attractor \iff outer envelope parts have $\nabla < 1/6$

 \Rightarrow mean total mass in region IV is determined by the attractor

$$\langle M_{\rm tot}^{\rm IV}
angle = M_{\rm peak} = \left(\frac{3 \, k \, T_{\rm H} \, a}{Gm \, (3M_{\bigstar})^{\frac{1}{3}}} \right)^{\frac{3}{2}} = 0$$

numerical results [Broeg 2006]: $M_{\text{peak}}^{\text{Broeg}} = 0.35 M_{2}$ (median) or $0.40 M_{2}$ (modus)

Johannes Schönke (ITP Uni-Bremen)

analytical comprehension of the characteristic mass peak

peak corresponds to characteristic mass in region IV (the "island")

 \in island \iff \in attractor \iff outer envelope parts have $\nabla < 1/6$

 \Rightarrow mean total mass in region IV is determined by the attractor

$$\langle M_{
m tot}^{
m IV}
angle = M_{
m peak} = \left(rac{3\,k\,T_{
m H}\,a}{Gm\,(3M_{\bigstar})^{rac{1}{3}}}
ight)^{rac{3}{2}} = \,0.375\,M_{
m H}$$

numerical results [Broeg 2006]: $M_{\rm peak}^{\rm Broeg} = 0.35 M_{2}$ (median) or $0.40 M_{2}$ (modus)

Johannes Schönke (ITP Uni-Bremen)

- 1 Model and Equations
- 2 The Isothermal Case
- 3 The Polytropic Generalisation
- 4 Application: Understanding of Mass Spectra Predictions

5 Stability

Stability

linear stability analysis

introducing perturbations of the form $\rho(r,t) = \rho_{\rm static}(r) + \delta\rho(r) e^{i\omega t}$ $M(r,t) = M_{\rm static}(r) + \delta M(r) e^{i\omega t}$

 $\Rightarrow \text{ Eigenvalue problem for } \delta M$ with Eigenvalues ω_n^2 and Eigenfunctions $\delta M_n(r)$ $\Rightarrow \text{ sign of the smallest Eigenvalue } \omega_0^2 \text{ decides about stability}$

Johannes Schönke (ITP Uni-Bremen)

Stability

envelope mass and border of stability for abla = 1/8 ($\gamma = 8/7$), fixed $T_{ m H}$

Johannes Schönke (ITP Uni-Bremen)

Conclusions

- A clear description of core-envelope structures is possible with the help of the two homology invariants φ and ψ .
- There are two basic behaviours of trajectories in the φ ψ space:
 1. approach of certain fixed values (attractor)
 2. ψ→0 (compact).
- Fundamental changes occur for $\nabla = 0$ (isothermal) and $\nabla = 1/6$.
- Characteristic physical quantities, e.g. the critical core mass, can be given analytically.
- Main peak in mass spectra can be understood.
- Structures near the attractor appear to be unstable.

Thanks for your attention!

(japanese cat paying attention)

Johannes Schönke (ITP Uni-Bremen)

Hydrostatic Planetary Models

December 13, 2006 8 / 8