The FEARLESS Approach to the Numerical Simulation of Astrophysical Turbulence

Wolfram Schmidt

J. C. Niemeyer, L. Iapichino A. Maier, M. Hupp, Ch. Federrath

Lehrstuhl für Astronomie Universität Würzburg

In collaboration with

Ch. Klingenberg (Inst. f. Mathematik, Univ. Würzburg) A. Kritsuk (Laboratory f. Comp. Astrophysics, UCSD)

Motivation

- \triangle **There is evidence that galactic star formation is** controlled by the turbulent interstellar medium (ISM)
- \triangle **At length and time scales comparable to the size and** life time of giant molecular clouds, turbulence in the ISM is transient and inhomogeneous

\triangle **This poses a numerical challenge:**

- Large eddy simulation (LES) is successful in treating homogeneous turbulence
- SPH, on the other hand, is suitable for self-gravitating gas, but turbulent flow tends to be elusive

A Possible Solution

 $\overline{}$

rits $\overline{}$ $\overline{\frown}$

<u>ው</u>

<u>ന</u>
-

 \bigcirc \bigcirc σ

Example 3 Adaptive mesh refinement (AMR) offers flexibility comparable SPH

 \triangle **The finit-volume approach employed with AMR** allows for controlable dissipation properties and a well defined cutoff length

But Turbulence is Space-Filling, Right?

- ***** Homogeneous turbulence is space-filling from the view point of the ensemble average (Kolmogorov theory, $E(k) \sim k^{-5/3}$)
- ***However, turbulence is intermittent**
- **Example 18 At any instant of time, dissipative structures** (turbulent eddies) are concentrated in regions of fractal dimension *D* less than 3
- Boldyrev et al. (2002) picked the estimate *D* ≈ 2.3 (Elmegreen & Falgarone, 1996) and found $E(k) \sim k^{-1.83}$ with the β-model

A Few Questions…

Simulations of Forced Supersonic Turbulence

- \triangle **Box with periodic boundary conditions**
- \div Stochastic forcing at length scales \sim 1/2 box size
- Adiabatic or isothermal EOS
- **Investigation of refinement criteria:**
	- Characteristic Mach number $Ma = 5$
	- Weight of solenoidal to compressive forcing modes $\zeta = 0.1$
	- **-** Effective resolution $N_{\text{eff}} = 192^3$, 1 refined level

 \cdot Production runs with N_{eff} = 768³, 1-2 refined levels

Static Grid Turbulence Simulation with Adiabatic EOS

Refinement by Gradients

- \triangle **The conventional approach is to refine grids in** the vicinity of steep gradients
- \triangle **The gradient of the velocity field can be split into** symmetric and antisymmetric parts:

Refinement by global thresholds of ω^2 and $|S|$ 2

vorticity (adiabatic EOS)probability density
vorticity (adiabatic probability density function of function of
EOS)

1 1

- **❖ Global thresholds are** mostly sensitive to the average
- **❖ But magnitude of** fluctuations is given by the variance σ
- **❖ Small fluctuations should** not trigger refinement
- ITA, Heidelberg U woman Schmudt, Univ. Würzburg **❖ Refine on** *i***-th grid patch** if $f(x) \geq C \lambda_i$ where $\lambda_i := \max(\text{ave } f, \sigma^{1/2} f)$

Refinement by regional variability of ω^2 and $|\int_0^2$

vorticity squared divergence

Refinement by regional variability of ω^2 and $|S|$ | 2

1 4

probability density function of

Towards AMR of Gravoturbulence

- \cdot **If the Jeans length** /_I becomes smaller then the box size, local gravitational collapse of compressed regions may ensue
- ❖ Additional refinement by $\frac{1}{3}$ conceivable, but $\frac{1}{3}$ is affected by turbulence (Bonazzola et al., 1987)
- ◆ Dynamical equation for rate of compression includes gravity term:

$$
-\frac{D}{Dt}d = \frac{1}{2}(|S|^2 - \omega^2) + \frac{1}{\gamma}c_s^2 \nabla^2 \ln \rho + \nabla \frac{1}{\gamma}c_s^2 \cdot \nabla \ln \rho + \rho \nabla^2 \frac{1}{\gamma}c_s^2 + 4\pi G \rho
$$

Isothermal EOS with Refinement by Compression

vorticity squared mass density

Refinement by ω^2 and $|S|^2$ vs. ω^2 and –D *d*/ D *t*

probability density function of
mass density (isothermal EOS) mass density (isothermal EOS)probability density function of

SGS Turbulent Pressure

- **❖ Unresolved velocity fluctuations produce** turbulent pressure
- \cdot In large eddy simulations, this pressure is given by the subgrid scale turbulence energy:

$$
P_{\rm sgs} = \frac{2}{3} \rho k_{\rm sgs} = \frac{1}{3} \rho q_{\rm sgs}^2
$$

 \cdot **Turbulent pressure modifies the EOS:**

$$
P_{\text{eff}} = P + P_{\text{sgs}} = \rho \left(\frac{1}{\gamma} c_{\text{s}}^2 + \frac{1}{3} q_{\text{sgs}}^2 \right)
$$

 \triangle **Dynamical equation with lowest-order pressure**dilatation corrections adopted from the closures proposed by Sarkar (1992) for RANS:

$$
\frac{D}{Dt}k_{sgs} - \frac{1}{\rho} \nabla \cdot (\rho C_K \Delta_{\text{eff}} k_{sgs}^{1/2} \nabla k_{sgs})
$$
\n
$$
= \left(\frac{C_v}{C_g} - \frac{\sqrt{2k_{sgs}}}{C_s} \right) \frac{\Delta_{\text{eff}} k_{sgs}^{1/2} |S^*|^2 - \frac{2}{3} \left(1 - 8\alpha_4 \frac{k_{sgs}}{C_s^2} \right) k_{sgs} d
$$
\n
$$
- \left(C_\epsilon - 2\alpha_3 \frac{k_{sgs}}{C_s^2} \right) \frac{k_{sgs}^{3/2}}{\Delta_{\text{eff}}}.
$$

Localised eddy-viscosity closure with test filtering (WS et al., 2005 & 2006)

LES of Supersonic Turbulence

LES of Supersonic Turbulence

ITA, Heidelberg Wolfram Schmidt, Univ. Würzburg 21

Fluid mEchanics with Adaptively Refined Large Eddy SimulationS

Astrophysical Applications

- **Example 7 Formation of the first stars (Abel et al., 2002)**
- **❖ Galactic star formation in the turbulent** interstellar medium (Mac Low & Klessen, 2004)
- **External Probabilistic model for the star formation rate in** simulations of galaxy evolution à la Krumholz & McKee (2005)
- **❖ Intergalactic gas in clusters, etc.**