The FEARLESS Approach to the Numerical Simulation of Astrophysical Turbulence

Wolfram Schmidt

J. C. Niemeyer, L. Iapichino A. Maier, M. Hupp, Ch. Federrath

Lehrstuhl für Astronomie Universität Würzburg

In collaboration with

Ch. Klingenberg (Inst. f. Mathematik, Univ. Würzburg) A. Kritsuk (Laboratory f. Comp. Astrophysics, UCSD)

Motivation

- There is evidence that galactic star formation is controlled by the turbulent interstellar medium (ISM)
- At length and time scales comparable to the size and life time of giant molecular clouds, turbulence in the ISM is transient and inhomogeneous

This poses a numerical challenge:

- Large eddy simulation (LES) is successful in treating homogeneous turbulence
- SPH, on the other hand, is suitable for self-gravitating gas, but turbulent flow tends to be elusive

A Possible Solution

Itsuk

- Adaptive mesh refinement (AMR) offers flexibility comparable SPH
- The finit-volume approach employed with AMR allows for controlable dissipation properties and a well defined cutoff length

Wolfram Schmidt, Univ. Würzburg

But Turbulence is Space-Filling, Right?

- ✤ Homogeneous turbulence is space-filling from the view point of the ensemble average (Kolmogorov theory, $E(k) \sim k^{-5/3}$)
- However, turbulence is intermittent
- At any instant of time, dissipative structures (turbulent eddies) are concentrated in regions of fractal dimension D less than 3
- * Boldyrev et al. (2002) picked the estimate $D \approx 2.3$ (Elmegreen & Falgarone, 1996) and found $E(k) \sim k^{-1.83}$ with the β-model

A Few Questions...

Simulations of Forced Supersonic Turbulence

- Box with periodic boundary conditions
- **Stochastic forcing** at length scales $\sim 1/2$ box size
- Adiabatic or isothermal EOS
- Investigation of refinement criteria:
 - Characteristic Mach number Ma = 5
 - Weight of solenoidal to compressive forcing modes $\boldsymbol{\zeta}=0.1$
 - Effective resolution $N_{\rm eff} = 192^3$, 1 refined level

✤ Production runs with $N_{eff} = 768^3$, 1-2 refined levels

Static Grid Turbulence Simulation with Adiabatic EOS

Wolfram Schmidt, Univ. Würzburg

Refinement by Gradients

- The conventional approach is to refine grids in the vicinity of steep gradients
- The gradient of the velocity field can be split into symmetric and antisymmetric parts:

Refinement by global thresholds of ω^2 and |S|

11

- Global thresholds are mostly sensitive to the average
- ✤ But magnitude of fluctuations is given by the variance *σ*
- Small fluctuations should not trigger refinement
- ★ Refine on *i*-th grid patch if $f(x) \ge C\lambda_i$ where $\lambda_i := \max(\operatorname{ave} f, \sigma^{1/2} f)$ ITA, Heidelberg

Refinement by regional variability of ω^2 and $|S|^2$

vorticity squared

Refinement by regional variability of ω^2 and $|S|^2$

probability density vorticity (adiabatic function of EOS)

14

Towards AMR of Gravoturbulence

- If the Jeans length / becomes smaller then the box size, local gravitational collapse of compressed regions may ensue
- Additional refinement by l_J conceivable, but l_J is affected by turbulence (Bonazzola et al., 1987)
- Dynamical equation for rate of compression includes gravity term:

$$-\frac{\mathrm{D}}{\mathrm{D}t}d = \frac{1}{2}\left(|S|^2 - \omega^2\right) + \frac{1}{\gamma}c_{\mathrm{s}}^2\nabla^2\ln\rho + \nabla\frac{1}{\gamma}c_{\mathrm{s}}^2 \cdot \nabla\ln\rho + \rho\nabla^2\frac{1}{\gamma}c_{\mathrm{s}}^2 + 4\pi G\rho$$

Isothermal EOS with Refinement by Compression

vorticity squared

mass density

Refinement by ω^2 and $|S|^2$ vs. ω^2 and -Dd/Dt

probability density function of mass density (isothermal EOS)

SGS Turbulent Pressure

- Unresolved velocity fluctuations produce turbulent pressure
- In large eddy simulations, this pressure is given by the subgrid scale turbulence energy:

$$P_{\rm sgs} = \frac{2}{3}\rho k_{\rm sgs} = \frac{1}{3}\rho q_{\rm sgs}^2$$

Turbulent pressure modifies the EOS:

$$P_{\text{eff}} = P + P_{\text{sgs}} = \rho \left(\frac{1}{\gamma}c_{\text{s}}^2 + \frac{1}{3}q_{\text{sgs}}^2\right)$$

Dynamical equation with lowest-order pressuredilatation corrections adopted from the closures proposed by Sarkar (1992) for RANS:

$$\frac{\mathrm{D}}{\mathrm{D}t}k_{\mathrm{sgs}} - \frac{1}{\rho} \nabla \cdot \left(\rho C_{\kappa} \Delta_{\mathrm{eff}} k_{\mathrm{sgs}}^{1/2} \nabla k_{\mathrm{sgs}}\right)$$
$$= \left(C_{\nu} - \alpha_2 \frac{\sqrt{2k_{\mathrm{sgs}}}}{c_{\mathrm{s}}}\right) \Delta_{\mathrm{eff}} k_{\mathrm{sgs}}^{1/2} |S^*|^2 - \frac{2}{3} \left(1 - 8\alpha_4 \frac{k_{\mathrm{sgs}}}{c_{\mathrm{s}}^2}\right) k_{\mathrm{sgs}} dt$$
$$- \left(C_{\epsilon} - 2\alpha_3 \frac{k_{\mathrm{sgs}}}{c_{\mathrm{s}}^2}\right) \frac{k_{\mathrm{sgs}}^{3/2}}{\Delta_{\mathrm{eff}}}.$$

Localised eddy-viscosity closure with test filtering (WS et al., 2005 & 2006)

ITA, Heidelberg

Wolfram Schmidt, Univ. Würzburg

LES of Supersonic Turbulence

ITA, Heidelberg

Wolfram Schmidt, Univ. Würzburg

20

LES of Supersonic Turbulence

ITA, Heidelberg

Wolfram Schmidt, Univ. Würzburg

SGS model treats asymptotically isotropic turbulence

Fluid mEchanics with Adaptively Refined Large Eddy SimulationS

Astrophysical Applications

- Formation of the first stars (Abel et al., 2002)
- Galactic star formation in the turbulent interstellar medium (Mac Low & Klessen, 2004)
- Probabilistic model for the star formation rate in simulations of galaxy evolution à la Krumholz & McKee (2005)
- Intergalactic gas in clusters, etc.