Chemistry as a Tool to Study Protoplanetary Disks: A Modeler's View

Dima Semenov (MPIA Heidelberg) Dmitry Wiebe (INASAN Moscow) Yaroslav Pavlyuchenkov (MPIA Heidelberg) Thomas Henning (MPIA Heidelberg)



#### Outline

*"All science is either physics or stamp collecting."* Ernest Rutherford (1871-1937)

- Basics of cosmochemistry
- Motivation to study disks
- Ionization state in disks
- Importance of disk dynamics for chemistry
- Disk and envelope around AB Aur
- Conclusions

# A Difficult Topic For Discussion Chemical

Astrochemistry

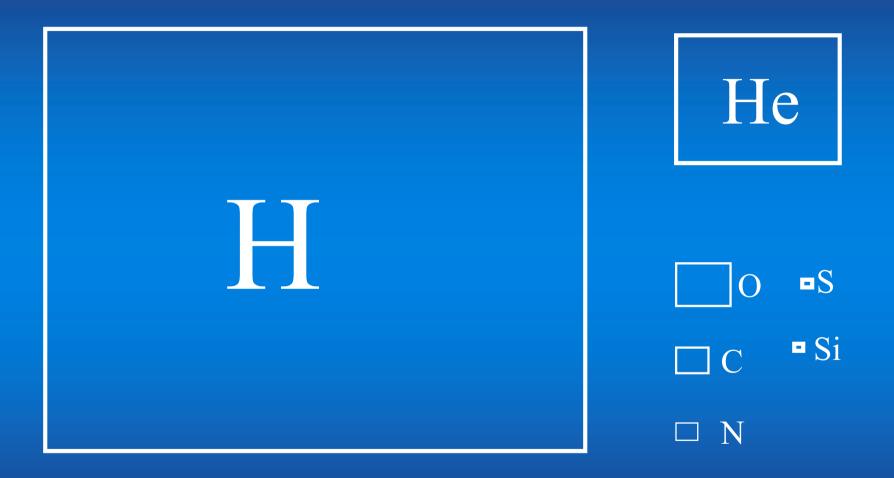
Spectroscopy and Theory

Astronomy

Reaction Rate Measurements

Intuition

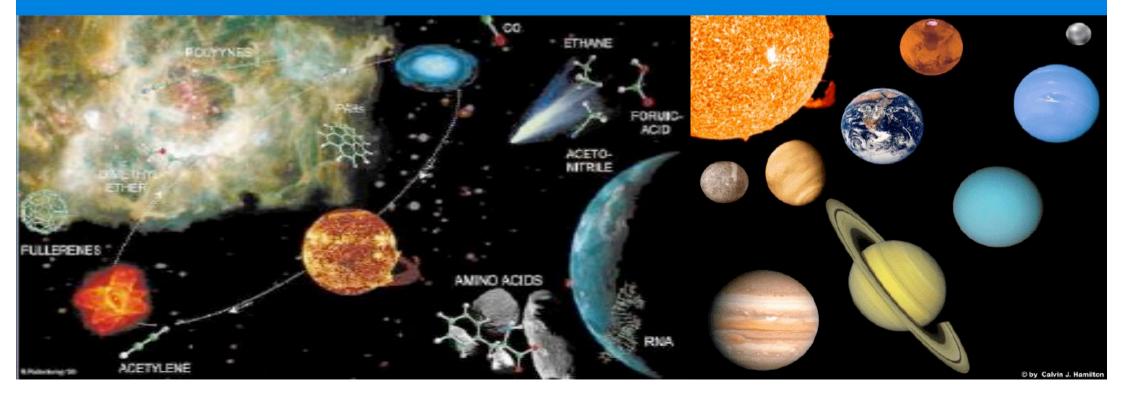
#### Brief History of Atoms and Molecules

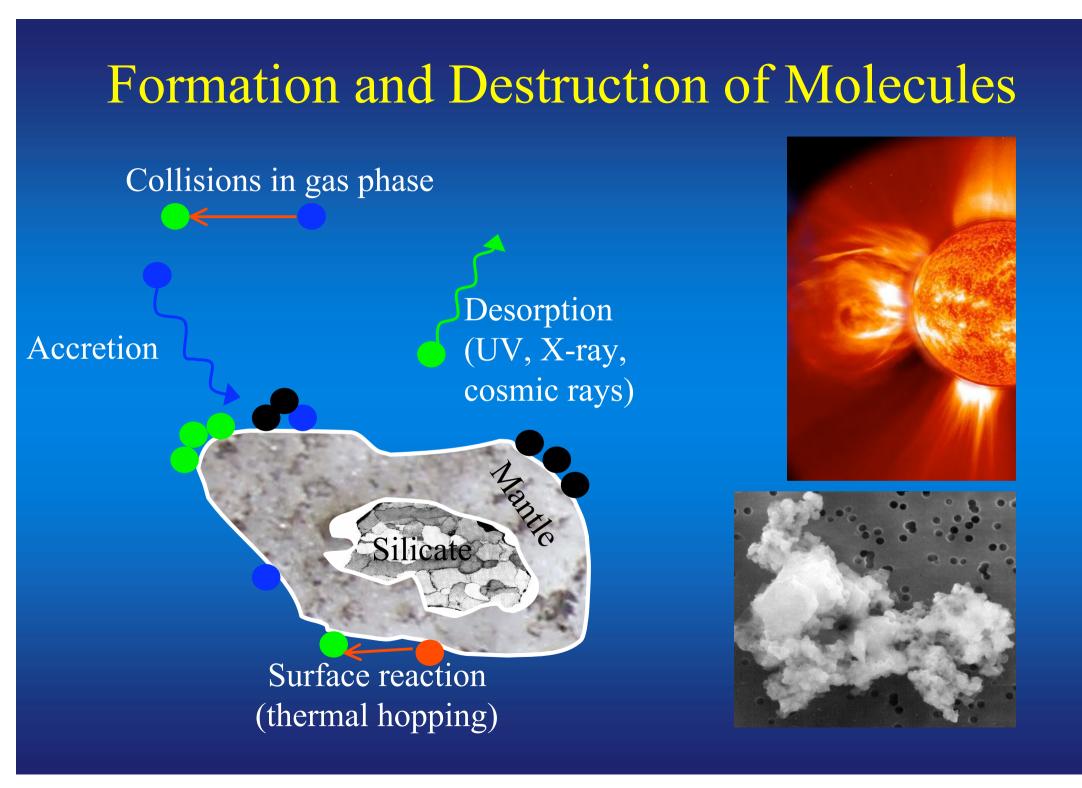

- 460 BC: concept of "atom" (Democritus)
- 1800's: experimental proof (J. Dalton)
- 1870's: periodic table (D. Mendeleev)
- First IS atoms are claimed in 1921
- First IS molecules: CH, CN, CH<sup>+</sup> (1937-41)
- First theory by Bates and Spitzer (1951)
- First IS molecule in radio: OH (1963)
- 1963-72: NH<sub>3</sub>, H<sub>2</sub>O, H<sub>2</sub>, H<sub>2</sub>CO, HCO<sup>+</sup>, etc.

# **Detected Interstellar Species**

|                 |                    | 0.0                              |                                 |                                 | Number of Atoms                   |                                  |                                    |                                       |                   |                    |  |
|-----------------|--------------------|----------------------------------|---------------------------------|---------------------------------|-----------------------------------|----------------------------------|------------------------------------|---------------------------------------|-------------------|--------------------|--|
| 2               | 3                  | 4                                | 5                               | 6                               | 7                                 | 8                                | 9                                  | 10                                    | 11                | 13                 |  |
| H <sub>2</sub>  | C <sub>3</sub>     | c-C <sub>3</sub> H               | C <sub>5</sub>                  | C5H                             | C <sub>6</sub> H                  | CH <sub>3</sub> C <sub>3</sub> N | CH <sub>3</sub> C <sub>4</sub> H   | CH <sub>3</sub> C <sub>5</sub> N?     | HC <sub>9</sub> N | HC <sub>11</sub> N |  |
| AIF             | C <sub>2</sub> H   | l-C <sub>3</sub> H               | C <sub>4</sub> H                | l-H <sub>2</sub> C <sub>4</sub> | CH <sub>2</sub> CHCN              | HCOOCH <sub>3</sub>              | CH <sub>3</sub> CH <sub>2</sub> CN | (CH <sub>3</sub> ) <sub>2</sub> CO    |                   |                    |  |
| AICI            | C <sub>2</sub> O   | C <sub>3</sub> N                 | C <sub>4</sub> Si               | C <sub>2</sub> H <sub>4</sub>   | CH <sub>3</sub> C <sub>2</sub> H  | CH <sub>3</sub> COOH?            | (CH <sub>3</sub> ) <sub>2</sub> O  | NH <sub>2</sub> CH <sub>2</sub> COOH? |                   |                    |  |
| C <sub>2</sub>  | C <sub>2</sub> S   | C <sub>3</sub> O                 | l-C <sub>3</sub> H <sub>2</sub> | CH <sub>3</sub> CN              | HC <sub>5</sub> N                 | C <sub>7</sub> H                 | CH <sub>3</sub> CH <sub>2</sub> OH |                                       |                   |                    |  |
| CH              | CH <sub>2</sub>    | C <sub>3</sub> S                 | c-C <sub>3</sub> H <sub>2</sub> | CH <sub>3</sub> NC              | HCOCH <sub>3</sub>                | H <sub>2</sub> C <sub>6</sub>    | HC <sub>7</sub> N                  |                                       |                   |                    |  |
| CH <sup>+</sup> | HCN                | C <sub>2</sub> H <sub>2</sub>    | CH <sub>2</sub> CN              | CH <sub>3</sub> OH              | NH <sub>2</sub> CH <sub>3</sub>   |                                  | C <sub>8</sub> H                   |                                       |                   |                    |  |
| CN              | HCO                | CH <sub>2</sub> D <sup>+</sup> ? | CH <sub>4</sub>                 | CH <sub>3</sub> SH              | c-C <sub>2</sub> H <sub>4</sub> O |                                  |                                    |                                       |                   |                    |  |
| со              | HCO <sup>+</sup>   | HCCN                             | HC <sub>3</sub> N               | HC <sub>3</sub> NH <sup>+</sup> |                                   |                                  |                                    |                                       |                   |                    |  |
| CO+             | HCS <sup>+</sup>   | HCNH <sup>+</sup>                | HC <sub>2</sub> NC              | HC <sub>2</sub> CHO             |                                   |                                  |                                    |                                       |                   |                    |  |
| CP              | HOC <sup>+</sup>   | HNCO                             | НСООН                           | NH <sub>2</sub> CHO             |                                   |                                  |                                    |                                       |                   |                    |  |
| CSi             | H <sub>2</sub> O   | HNCS                             | H <sub>2</sub> CHN              | C <sub>5</sub> N                |                                   |                                  |                                    |                                       |                   |                    |  |
| HCl             | H <sub>2</sub> S   | HOCO+                            | H <sub>2</sub> C <sub>2</sub> O | Detected in disks: CO           |                                   |                                  |                                    |                                       |                   |                    |  |
| KCl             | HNC                | H <sub>2</sub> CO                | H <sub>2</sub> NCN              |                                 | Den                               | cieu II                          | I UISKS                            | •                                     |                   | J                  |  |
| NH              | HNO                | H <sub>2</sub> CN                | HNC <sub>3</sub>                |                                 | 1                                 | • ,                              | TIC                                | $O^+$ DCC                             | +                 | NT                 |  |
| NO              | MgCN               | H <sub>2</sub> CS                | SiH <sub>4</sub>                |                                 | and                               | 1SOLOD6                          | es, HC                             | $O^+$ , DCC                           | )', (             | IN,                |  |
| NS              | MgNC               | H <sub>3</sub> O <sup>+</sup>    | H <sub>2</sub> COH <sup>+</sup> |                                 |                                   | -                                |                                    |                                       |                   |                    |  |
| NaCl            | $N_2H^+$           | NH <sub>3</sub>                  |                                 |                                 | HC                                | N DCN                            | N HN(                              | $C, N_2H^+,$                          | H_(               |                    |  |
| OH              | N <sub>2</sub> O   | SiC <sub>3</sub>                 |                                 |                                 |                                   |                                  |                                    |                                       | _                 | ∕∙,                |  |
| PN              | NaCN               |                                  |                                 |                                 | CC                                | HDO                              | Dutros                             | y et al. 19                           | 07.               |                    |  |
| so              | OCS                |                                  |                                 |                                 | CD,                               | IIDO (                           | Duncy                              | ( Ct al. 1)                           | , 10              |                    |  |
| SO <sup>+</sup> | SO <sub>2</sub>    |                                  |                                 |                                 | Var                               |                                  | -1 100                             | ( <b>7</b> )                          |                   |                    |  |
| SiN             | c-SiC <sub>2</sub> |                                  |                                 |                                 | Kas                               | tner et                          | al. 199                            | 7)                                    |                   |                    |  |
| SiO             | CO <sub>2</sub>    |                                  |                                 |                                 |                                   |                                  |                                    | /                                     | •                 |                    |  |
| SiS             | NH <sub>2</sub>    |                                  |                                 |                                 |                                   |                                  |                                    |                                       |                   |                    |  |
| CS              | H3+                |                                  |                                 |                                 |                                   |                                  |                                    |                                       |                   |                    |  |
| HF              |                    |                                  |                                 |                                 |                                   |                                  |                                    |                                       |                   |                    |  |

Note that observations suggest the presence of large PAHs and fullerenes in the interstellar gas (Tielens et al 1999, Foing & Ehrenfreund 1997).


#### The Astronomer's Periodic Table




Courtesy of Ben McCall and Steve Charnley

# Role of Molecules

- Probes of physical conditions of the source
- Cooling of gas
- Detailed information about the source (cosmic rays, elemental abundances, dust properties, ionization/magnetic fields, etc.)





#### **Important Reactions**

- Ionization:
- Photodissociation:
- Charge exchange:
- Atom exchange:
- Radiative association:
- Neutral-neutral:
- Ion-molecule:
- Dissociative rec.:
- Surface reactions:

 $H + h\nu, X, CRP \implies H^+ + e^ CH \Rightarrow C + H$  $H^+ + O \implies H + O^+$  $O^+ + H_2 \implies OH^+ + H$  $H + C \implies CH + hv$  $CH + NO \implies HCN + O$  $H_3^+ + CO \implies H_2 + HCO^+$  $H_3O^+ + e^- \implies H_2O + H$  $H + O \implies OH$ 

(yellow – effective at low temperatures)

#### **Chemical Reaction Databases**

4300

- Ohio State University (OSU): reactions, 430 species, 12 elements
- Manchester University (UMIST):
  - Rate95: 4000 reactions, 400 species, 12 elements
  - Rate07: 4600 reactions, 420 species, 12 elements (www.udfa.net)
- NIST Chemical Kinetics Database: ~30,000 neutral-neutral reactions, theory and experiment, generate best fit
- JPL (Anicich): Compilation of all ion-molecule reactions with references

#### **Chemical Reaction Databases**

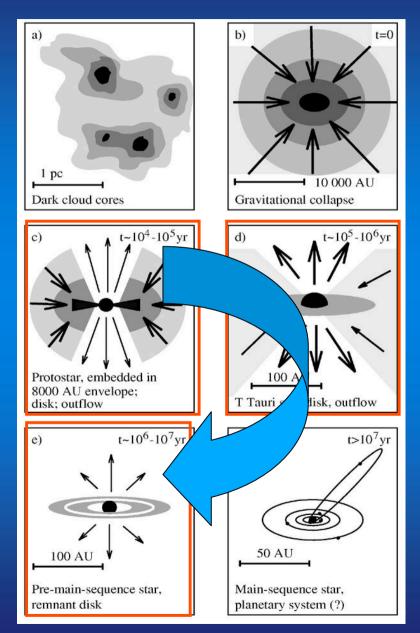
- About 10-20% of all reactions have accurately determined rates
- Extrapolation of rates on low T
- Many neutral-neutral reaction rates were "guessed"
- Branching ratios are not well constrained
- Photorates are based on 1D plane-parallel UV model
- Scarse X-ray chemistry
- Unknown surface chemistry / desorption energies

*"Errors using inadequate data are much less than those using no data at all."* 

Charles Babbage (1792-1871)

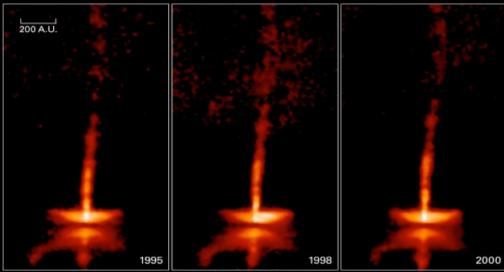
#### **Time-Dependent Chemistry Modeling**

 $\partial n_i$  $\frac{\partial n_i}{\partial t} = \sum_{i,j,k} k_{jk} n_j n_k - n_i \sum_{i,j,k} k_l n_l + \nabla D n_{H2} \nabla n_i / n_{H2} - \nabla U n_i$ 


Evolution = Formation - Destruction + Diffusion + Advection [ Chemistry ] [ Dynamics ]

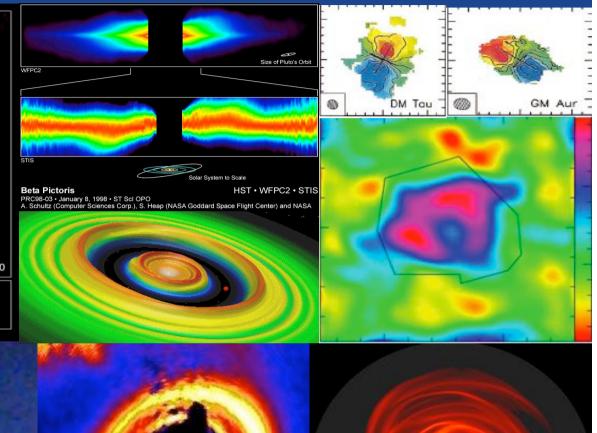
#### Input information:

- Physical conditions, diffusion coefficient & flow data
- Initial abundances of species
- Chemical network
- Numerical solver
- Benchmarking


# Motivation to Study Protoplanetary Disks

- Initial conditions for planet formation
- Composition of primitive bodies in the solar system
- Gas depletion and dissipation in disks – Molecules as tracers of disk evolutionary history
- Chemistry Physical state of the disk (temperature, density, radiation, ionization, transport)




Hogerheijde (1999)

## **Disk Bestiary**



The Dynamic HH 30 Disk and Jet Hubble Space Telescope • WFPC2

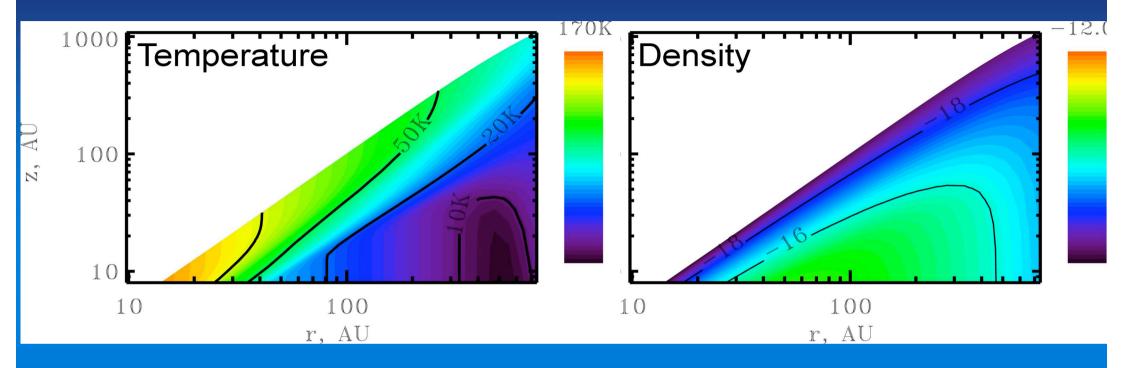
NASA and A. Watson (Instituto de Astronomía, UNAM, Mexico) • STScI-PRC00-32b



Courtesy of NASA, NRAO, Cornell Univ., IRAM, etc.

#### **Disk Structure Observable region with interferometers** ~1000 AU IS UV, cosmic rays photon-dominated layer hv, UV, X-rays warm mol. layer snowline cold midplane accretion (magnetorotational instability) turbulent mixing 1 AU100 AU ~500 AU

#### Results: I. Ionization Degree in Disks

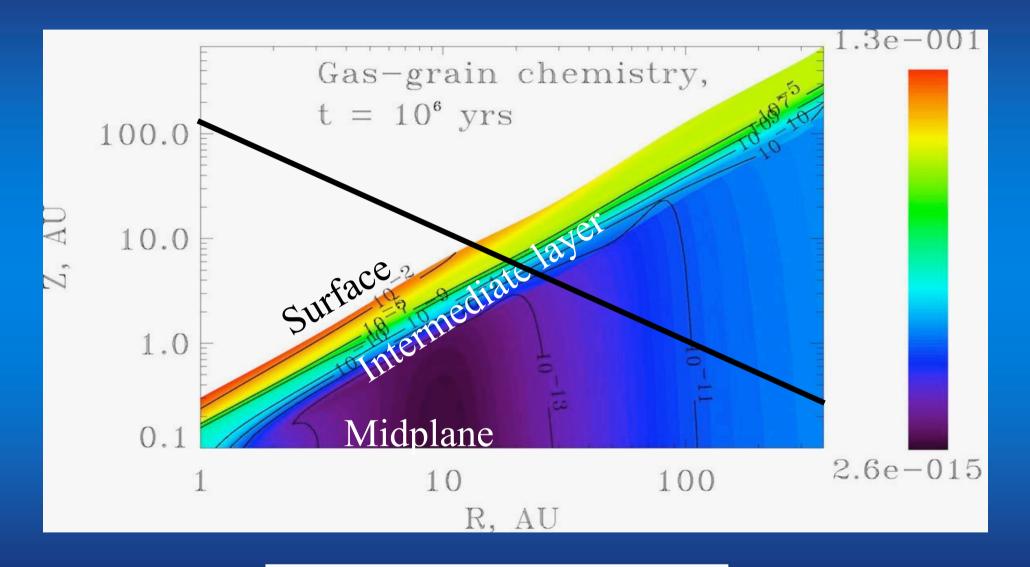

 Angular momentum transport via MHD turbulence (Balbus & Hawley 1991)

Low ionization implies non-ideal MHD regime but often simple chemical equilibrium is used

"Dead" zone size and location

(Semenov, Wiebe, Henning, 2004, A&A, 417, 93)

#### **Disk Physical Model**




Steady-state flared disk of D'Alessio et al. (1999)
 Mass: 0.05-0.5M<sub>sun</sub>, radius: 200-800 AU, α=0.01-01
 Grain size distribution (mostly sub-micron particles)

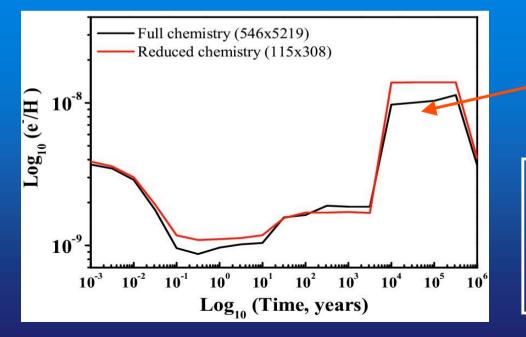
# Disk Chemical Model

- Updated UMIST'95 network
- Limited deuterium chemistry
- High-energy sources: X-ray, UV, cosmic ray particles
- Gas-grain interactions: accretion, desorption
- Surface chemistry
- Atomic/Molecular initial abundances
- Evolution over a few Myr

#### Ionization Structure at 1 Myr



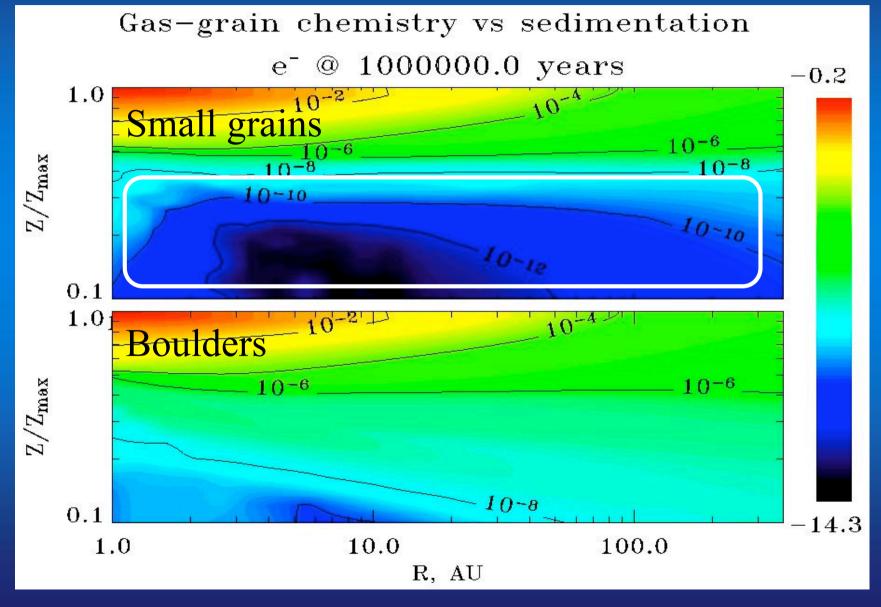
"Layered" vertical structure


## Dominant Ions at 1 Myr

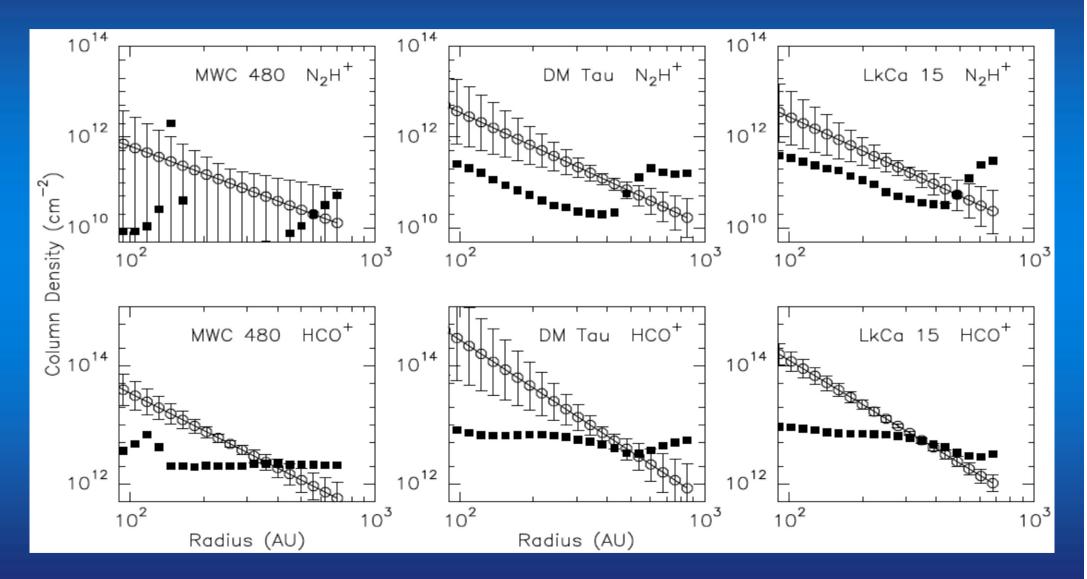
| R, AU        | 1               | 3                                              | 10               | 30               | 100              | 300              | 373              |
|--------------|-----------------|------------------------------------------------|------------------|------------------|------------------|------------------|------------------|
| Midplane     | Na <sup>+</sup> | HCNH <sup>+</sup>                              | HCO <sup>+</sup> | HCO <sup>+</sup> | $N_2H^+$         | $H_3^+$          | $H_3^+$          |
| Intermediate | Mg <sup>+</sup> | HCO <sup>+</sup> ,                             | HCO <sup>+</sup> |
| layer        |                 | S <sup>+</sup> , H <sub>3</sub> <sup>+</sup> , |                  |                  |                  |                  |                  |
|              |                 | $\rm NH_4^+,$ etc.                             |                  |                  |                  |                  |                  |
| Surface      | C <sup>+</sup>  | C <sup>+</sup>                                 | C <sup>+</sup>   | C <sup>+</sup>   | $C^+$            | C <sup>+</sup>   | C <sup>+</sup>   |
| layer        | H+              | H <sup>+</sup>                                 |                  |                  |                  |                  |                  |

C<sup>+</sup> is the most abundant ion, HCO<sup>+</sup> is the most abundant observable ion

#### **Chemical Stratification**


- Surface (~10 species, 20 reactions, ~1,000 yrs): Photochemistry driven by stellar X-rays and UV
   Midplane (~20 species, 50 reactions, ~10,000 yrs);
  - "Dark" chemistry (cosmic rays, RN) with freeze out
- Intermediate layer (~100 species, 300 reactions):
- "Rich" molecular chemistry (X-rays), no equilibrium!




Surface reactions!

Chemical equilibrium is not reached in the inner disk zone

# Ionization Structure:Effectof Grain Evolution



#### Observed N<sub>2</sub>H<sup>+</sup> and HCO<sup>+</sup>: (,,CID": Bordeaux – Heidelberg – Jena – Grenoble - Paris)



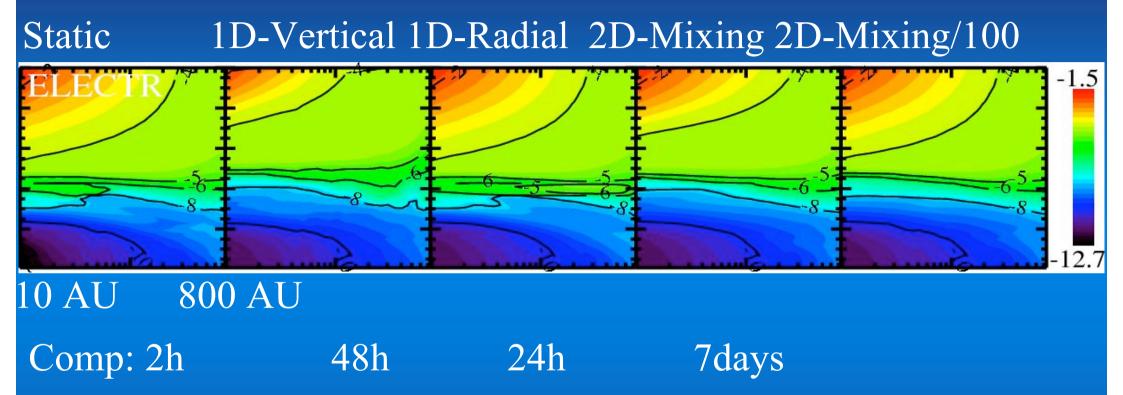
(Dutrey, Henning et al. 2007, A&A, arXiv:astro-ph/0612534)

#### II. Turbulence in Disks

**Theoretical Milestones:** 

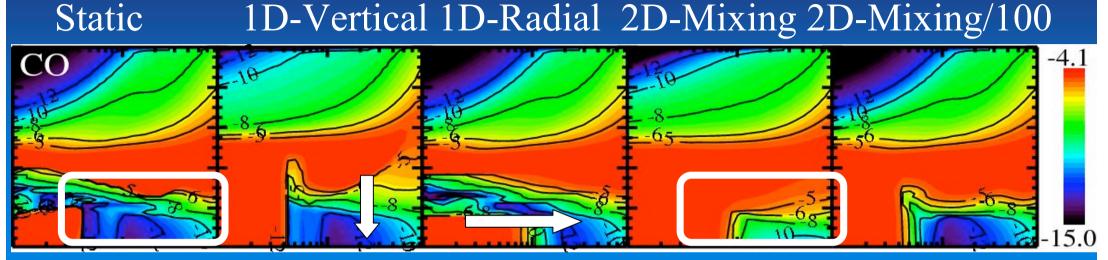
- Anomalous viscosity (von Weizsäcker, early 40s)
- Alpha-model of disks (Shakura & Sunyaev 1973)
- Magnetorotational instability (Balbus & Hawley 1991)

#### **Observational Hints:**


- Non-thermal line broadening (~100 m/s)
- Crystalline silicates in comets and outer disk regions (van Boeckel et al. 2005, Wooden et al. 2005)
- Gas-phase CO at *T*<20K in DM Tau (Dartois et al. 2003)

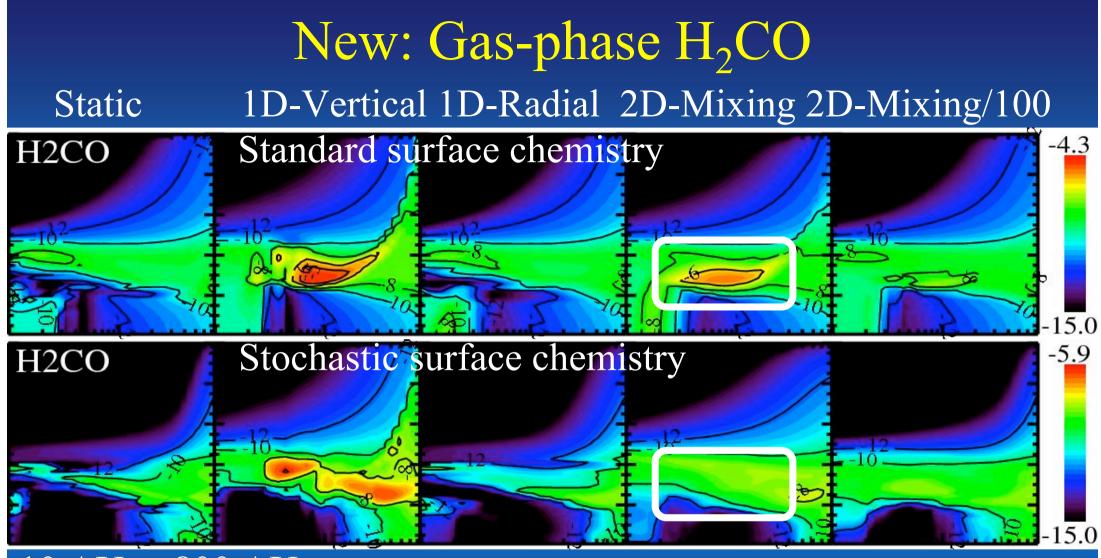
#### **Previous Results**

- Layered disk structure is preserved
- Ionization degree is not affected
- Many species abundances are increased
- CO<sub>2</sub> formation in inner zone (<10 AU)</li>
- Oxygen isotopic anomaly in Solar Nebula
- Better agreement with observations (1D-model)


Gail & Tscharnuter (>2000), Ilgner et al. (2004, 2006), Lyons & Young (2005), Willacy et al. (2006)

# New: Disk Ionization Degree




Chemical equilibrium is faster then dynamics (~1,000 vs 10,000 years)

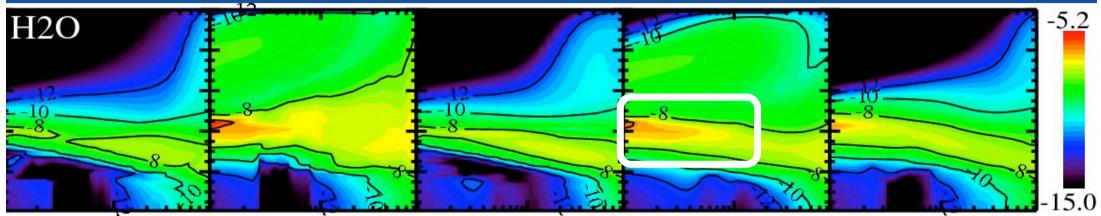
# New: Cold CO Gas

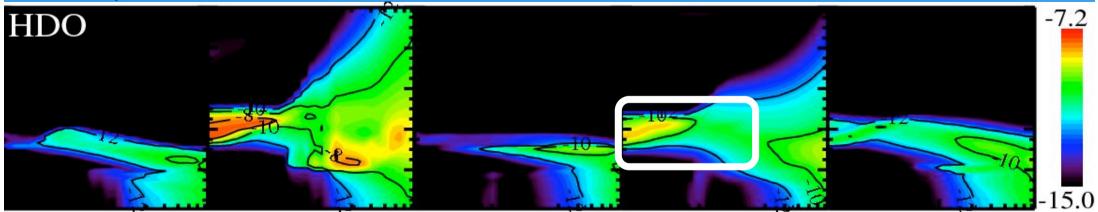


#### 10 AU 800 AU

Effective transport of CO (2D-model) supports the observations of Dartois et al. (2003)



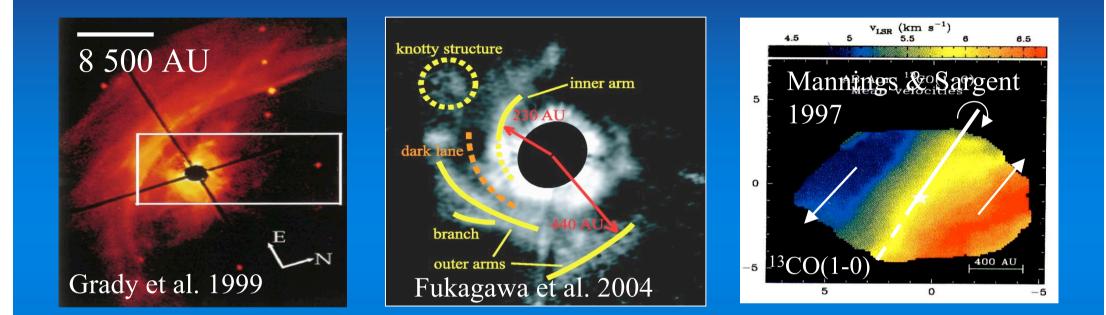

#### 10 AU 800 AU


H<sub>2</sub>CO abundances are sensitive to the details of surface chemistry

#### New: Gas-phase H<sub>2</sub>O and HDO

#### Static

#### 1D-Vertical 1D-Radial 2D-Mixing 2D-Mixing/100

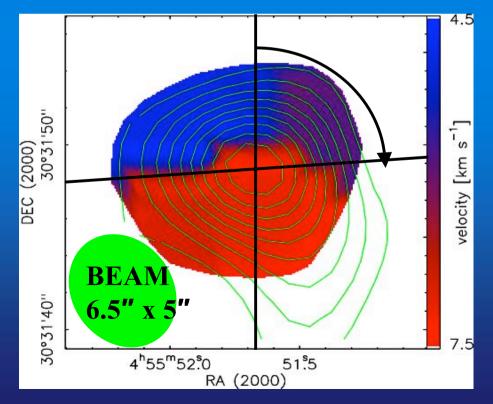





#### 10 AU 800 AU

More gas-phase water in planet-forming zone

# III. Observations and Modeling of AB Aur




Star: Herbig Ae, 140pc, 10 000K,  $\approx 2.5 M_{Sun}$ ,  $\sim 2 Myr$ Rotating disk:  $\sim 400 \text{ AU}$ ,  $\sim 0.01 M_{Sun}$ Envelope: diffuse,  $\sim 35000 \text{ AU}$ ,  $\sim 1 M_{Sun}$ 

#### Sub-millimeter Observations

IRAM 30-m antenna: HCO<sup>+</sup>, DCO<sup>+</sup>, CO, C<sup>18</sup>O, HCN, HNC, CN, H<sub>2</sub>CO, SiO, CS @ 10"-30" (~1500 - 4500 AU)

Plateau de Bure interferometer (5x15-m antennas): HCO<sup>+</sup> (1-0) @ 5.1" x 6.8" (~850 AU)

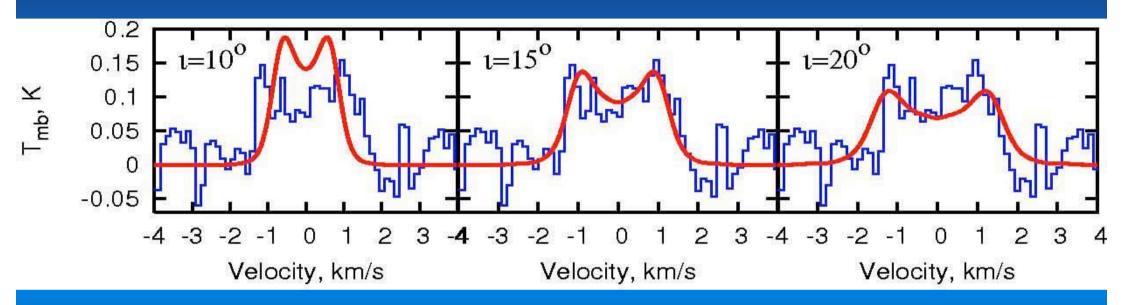


Face-on rotating disk ( $r \le 1000 \text{ AU}$ ), positional angle ~ 80°

#### "Step-by-step" Modeling Scheme

#### 30 iterations (3 days each)

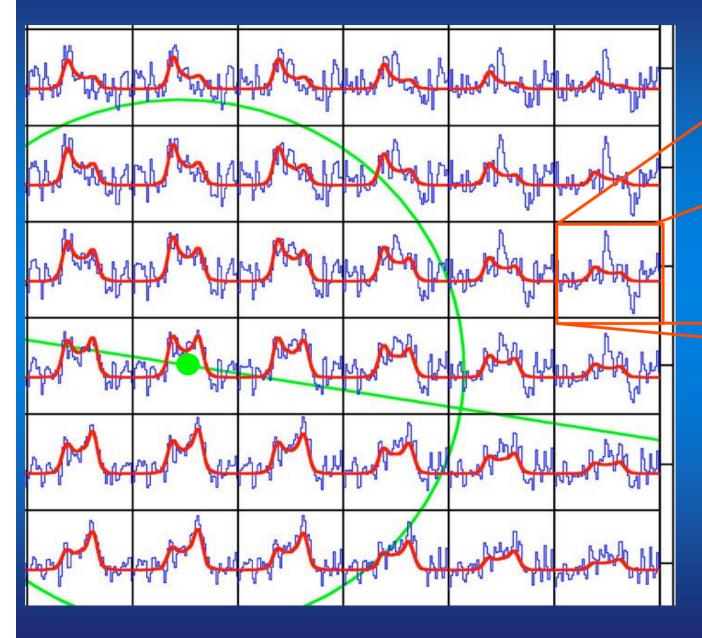
Gas-grain chemical model

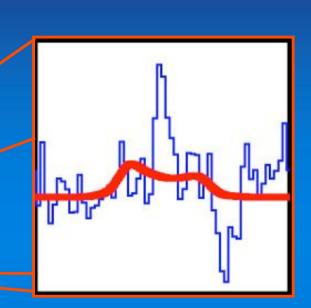

Physical model

Excitation temperatures, beam-convolved spectra & map

- Comparison with observations:
- 1) disk orientation,
- 2) radius & mass,
- 3) temperature of the envelope,
- 4) density & kinematic structure of the envelope

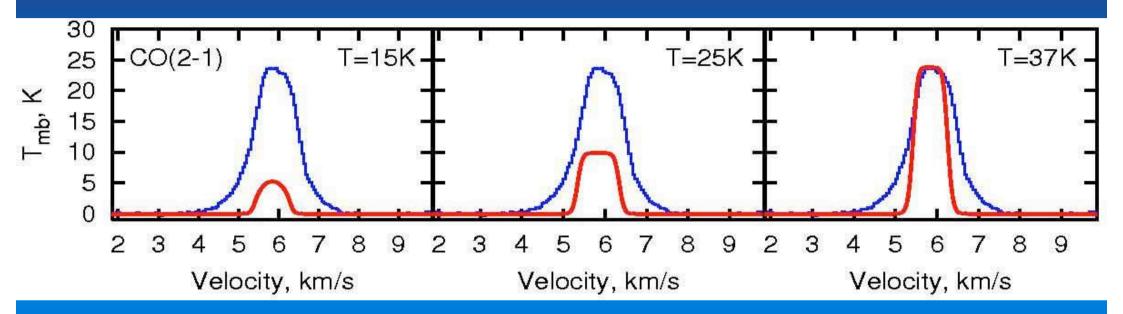
#### Orientation


(Semenov et al., 2005, ApJ, 621, 853)



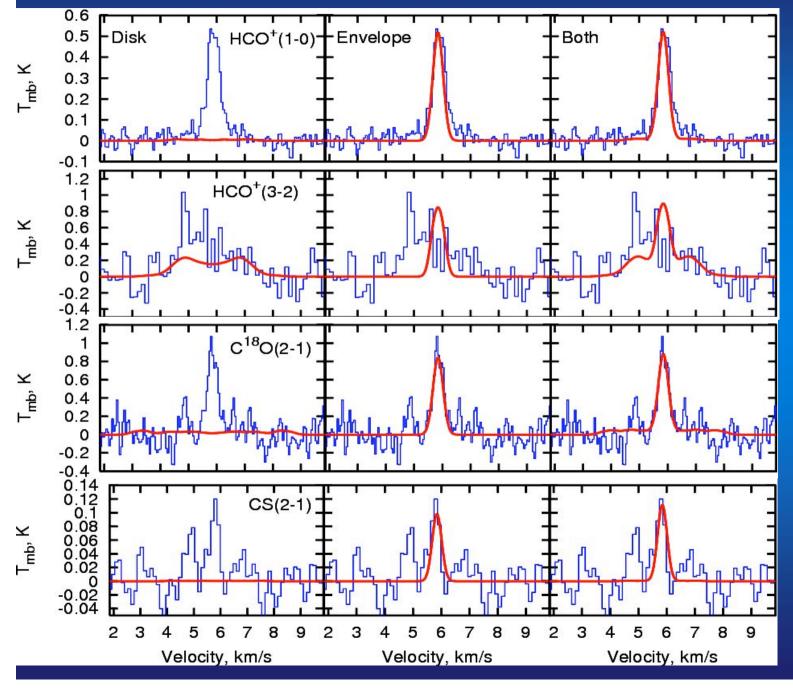

(depends on the stellar mass and disk density gradient)

Inclination angle (width):  $i = 17^{+6^{\circ}}_{-3}$ Positional angle (shape):  $\varphi = 80^{\circ} \pm 30^{\circ}$ 


# HCO<sup>+</sup>(1-0) Interferometric Map






Disk radius is 400 ± 200AU
Disk mass is 0.01M<sub>sun</sub> (± x7)
Keplerian rotation
"Clumps?"

# Temperature in Envelope: CO(2-1)



#### Temperature $\approx 35 \pm 14 \text{K} (r \le 800 \text{ AU})$

# Density of Envelope



HCO<sup>+</sup>(1-0):  $n_0 = 4$ ·  $10(5) \text{ cm}^{-3}$  $p = -1 \pm 0.3$ , infall profile about  $1 M_{sun}$  $4.10(-8) M_{sun}/yr$ about 0.3Myr < 25 Myr

#### Conclusions

- Mostly equilibrium chemistry for ionization degree
- HCO+ is the dominant observable ion (radio)
- Stochastic surface chemistry in disks
- Mixing works as non-thermal desorption
- Both radial and vertical mixings are crucial
- Mixing model agrees better with observations
- Consistent chemical and LRT modeling provides a wealth of information about disks
- Envelopes can be crucial for disk evolution

#### Collaborators

- CID collaboration (A. Dutrey, S. Guilloteau, V. Pietu, A. Bacmann, J. Pety, V. Wakelam)
- D. Wiebe (Moscow): Chemistry with mixing
- Ya. Pavlyuchenkov (MPIA): Line Radiative Transfer
- K. Schreyer (Jena): Disk observations
- C. Dullemond (MPIA): Disk dynamics