

Diffusion in old stars

Andreas Korn Uppsala Astronomical Observatory

Overview

- The cosmological lithium discrepancy
- Atomic diffusion: theory vs. observation
- Observational difficulties
- Results for NGC 6397
- Implications
- Outlook

collaborators: Frank Grundahl, Olivier Richard, Lyudmila Mashonkina, Paul Barklem, Remo Collet, Nikolai Piskunov & Bengt Gustafsson

lithium: BBN and the Spite plateau

historically (1982 – 2003):

use the uniform atmospheric lithium abundance of warm halo stars (Spite & Spite 1982) to constrain $\Omega_{\rm b}$

- 1984: Michaud *et al.* predict stellar depletion of lithium in warm halo stars by a factor of 10
- (mid-1990s: use log ϵ (D)_{high-z} to constrain Ω_b)
- 1999: Ryan *et al.* find slope in $\log \varepsilon$ (Li) vs. [Fe/H]
- now: use CMB+BBN to predict $\log \varepsilon (Li)_p$

result: stellar abundances are systematically below primordial one (2.2 \pm 0.1 vs. 2.64 \pm 0.03)

possible solutions

- BBN wrong: assumed ⁷Be (d,p) 2 ⁴He reaction rate **too small?** (Coc *et al.* 2004)

 Angulo *et al.* (2005): (X-section)_{exp} slightly *smaller*
- stellar depletion à la Michaud: Can such models meet all observational constraints in connection with lithium?

Richard et al. (2005): yes

• new physics: decaying supersymmetric particle? (Jedamzik *et al.* 2006)

What is atomic diffusion?

Atoms/ions are subject to a number of forces in stellar atmospheres:

- gravity (↓, gravitational settling)
- gas pressure gradient (^)
- thermal gradient (\Downarrow)
- radiative acceleration (1, *levitation*)
- macroscopic flows: primarily convection
- e-m forces, shocks, ...

atomic diffusion: the net effect of all processes

convection + small diffusion constants ⇒ long timescales are required to produce sizable effects in cool stars

current model predictions

theory vs. observations of Sirius A for various efficiencies of turbulent mixing (Richer *et al.* 2000)

this mixing is needed to keep a certain fraction of the star mixed, otherwise effects become too large to reconcile with observations

turbulent mixing parametrized as an additional term in diffusion equation (*ad hoc*):

 $D_{\mathrm{T}}\,\propto\,D(\mathrm{He})_{0}\,(
ho_{0}\,/\,
ho)^{3}$

 ρ^{-3} dependence constrained by the solar Be abundance (Proffit & Michaud 1991)

current model predictions (cont'd)

– – grav.settl. + turb.mix.

grav.settl. + rad.lev. grav.settl. + rad.lev. + turb.mix.

current model predictions (cont'd)

How to observe atomic diffusion

Methods and results so far

- King *et al.* (1998): M 92 @ [Fe/H] ≈ -2.4 "We note possible evidence for [Fe/H] differences within M92."
- Gratton *et al.* (2001): NGC 6397 @ [Fe/H] ≈ -2.1 no indication of significant abundance differences
- Gratton *et al.* (2001): NGC 6752 @ [Fe/H] ≈ -1.6 no indication of significant abundance differences
- Cohen & Meléndez (2005): M 13 @ [Fe/H] ≈ -1.5 only one/two unevolved (subgiant) stars
- Ramírez & Cohen (2003): M 5 @ [Fe/H] ≈ -1.3 no indication of significant abundance differences

Ramírez *et al.* (2001): M71 @ [Fe/H] ≈ -0.8) no indication of significant abundance differences

Methods and results so far (cont'd)

Gratton *et al.* (2001):

- 1. want to avoid reddening
 - ➡ use a spectroscopic temperature scale
 - Balmer profile temperatures
- 2. use gravity estimate from isochrone
- 3. derive [Fe/H] from FeI

Results:

1. $T_{eff}(TOP) = 6480 \text{ K}$ $T_{eff}(bRGB) = 5480 \text{ K}$ 2. $\log g (TOP) = 4.1$ $\log g (bRGB) = 3.4$ 3. $[Fe/H]_{TOP} = [Fe/H]_{bRGB} = -2.03 \pm 0.02$

assuming LTE

Problems in the Gratton et al. analysis

Gratton et al. (2001):

- 1. want to avoid reddening
 - ⇒ use a spectroscopic temperature scale
 - Balmer profiles temperatures
- 2. use gravity estimate from isochrone
- 3. derive [Fe/H] from FeI

Problems:

UVES blaze correction is imperfect
 ⇒ Δ T_{eff} misestimated?

 Not checked by independent means!
 & 3. Ionization equilibrium of Fe not established (0.11 dex), LTE assumption valid?
 ⇒ Δ log g misestimated?
 Use of non-diffusive isochrones may lead to a circular argument!

Problems in the Gratton et al. analysis (cont'd)

A re-examination of atomic diffusion in NGC 6397

observations with VLT UT2 and FLAMES+UVES (6/2004 (VM) & 3/2005 (SM); Korn, Gustafsson, Piskunov, Barklem & Grundahl):

- re-observe some of Gratton's targets with FLAMES+UVES:
 5 bRGB and 5 TOP stars;
- additionally, observe 2 SGB and 6 RGB stars;
- fill the 130 MEDUSA fibres with targets along the SGB to look for abundance trends at somewhat lower resolution

FLAMES+UVES: UVES goes fibres

homogeneous analysis of FLAMES+UVES targets

- T_{eff} of bRGB stars confirmed, but systematically lower T_{eff} values for TOP stars, by 220 K; baseline extended to RGB stars
- log *g* values determined from Fe I/II ionization equilibrium in non-LTE (Korn *et al.* 2003)
- new stellar parameters not in conflict with a 13.5 Gyr diffusive isochrone
- independent support for lower $\Delta T_{eff} / \Delta \log g$ (TOP-RGB) values from broad-band and Strömgren photometry:

 $\Delta T_{\text{eff}}(\text{spec}) = 1124 \text{ K vs.}$ $\Delta T_{\text{eff}}(V-I) = 1070 \text{ K and } \Delta T_{\text{eff}}(v-y) = 1108 \text{ K}$

 $\Delta \log g$ (spec) = 1.33 (+0.05 for He) vs. $\Delta \log g (\Delta V) = 1.38$

main results

atomic diffusion is at work at the level predicted by current models including turbulent mixing (T6.0)

 $\Delta [Fe/H]_{TOP-RGB} = 0.16 \pm 0.05$ (similar trend using a 3D MA)

other elements (Ca, Ti) show shallower trends, as predicted by the models

main results (cont'd)

main results (cont'd)

correcting for diffusion, the stellar lithium abundances can be reconciled with the CMB+BBN prediction (Korn *et al.* 2006, Nature 442, 657):

log ϵ (Li)_{NGC 6397} = 2.54 \pm 0.10

vs. $\log \epsilon (\text{Li})_p = 2.64 \pm 0.03$ (Spergel *et al.* 2007)

predicted by Michaud et al. (1984)

shown to be compatible with observations by Richard *et al.* (2005)

other implications

- unevoled metal-poor stars appear more metal-poor than they really are; abundance *ratios* are less affected.
 Can such models explain the absence of lithium in the ultra-metal-poor star HE 1327–2326 (Frebel *et al.* 2005)?
- together with helium diffusion, metal diffusion can likely explain the notoriously high ages of halo field TOP and SGB stars
- globular-cluster ages are hardly affected, as metallicity can be determined from giants and turbulent mixing does not affect the central helium diffusion
- integrated-light studies of extragalactic metal-poor stellar populations are possibly affected, if not properly calibrated

Lessons learned

important things should not be done "single-handedly"

don't rely on a single $T_{\text{eff}} / \log g$ indicator ("cross-check")

don't use non-diffusive evolutionary tracks to prove the non-existence of diffusion

differential analyses can be remarkably accurate

Outlook

"[...] Urknalltheorie ist gerettet. Zumindest momentan." NyTeknik, August 2006

- Focus has changed: from constraining Ω_b to understanding stellar physics. In particular, we would like to understand what gives rise to the turbulent mixing needed to make theory agree with observations.
- One possible explanantion: rotation, angular-momentum transport & internal gravity waves (see, e.g., Talon & Charbonnel 2005)
- To constrain atomic diffusion and turbulent mixing further, we will observe NGC 6752 @ [Fe/H] = -1.5(46 h with FLAMES in P79)
- Other challenges: ⁶Li plateau well above BBN prediction (Asplund *et al.* 2006), a signature of new physics (Jedamzik *et al.* 2006)?

other works

- King *et al.* (1998): M 92 @ [Fe/H] ≈ -2.4 "We note possible evidence for [Fe/H] differences within M92."
- Gratton *et al.* (2001): NGC 6397 @ [Fe/H] ≈ -2.1 data-reduction problem \Rightarrow biased T_{eff} values for TOP stars (see Korn *et al.*, astro-ph/0608338)
- Gratton *et al.* (2001): NGC 6752 @ [Fe/H] ≈ -1.6 similar data-reduction problems? to be re-investigated...
- Cohen & Meléndez (2005): M 13 @ [Fe/H] ≈ -1.5 only three unevolved (subgiant) stars: [Fe/H] lower by 0.13 dex
- Ramírez & Cohen (2003): M 5 @ [Fe/H] ≈ -1.3 6 unevoled vs. 19 evolved stars: more efficient turbulent mixing?
- Ramírez *et al.* (2001): M71 @ [Fe/H] ≈ -0.8 likely too metal-rich (extended outer CZ, cooler TOP)

the hard limit: 13.5 Gyr

stellar parameters in good agreement with a 13.5 Gyr diffusive isochrone constructed from the turbulentmixing model that describes the heavyelement abundance trends best

