
Chapter 3

General Relativity in a Nutshell

As alreadymentioned before, a Newtonian description of the universe has only limited
validity, especially in the early universe. This lecture, however, does not assume any
prior knowledge of General Relativity (GR). It will be impossible to give a sufficiently
in-depth introduction to GR in this lecture, but I also do not want to skip it entirely. So
we will start this chapter with a very “quick and dirty” introduction to GR. We will,
however, assume that you have knowledge of tensor calculus and that you are familiar
with special relativity.

3.1 Minkowski spacetime revisited
Before we start to discuss curved space and curved spacetime, let us recapitulate the
concept of Minkowski spacetime and the metric, just to get the notations right and
refresh our memories.

In special and general relativity space and time are treated as a unity. We thus get a
4-D spacetime with xµ denoting a point in this spacetime. The x0-coordinate denotes
time (with x0 ≡ ct, with c the light speed and t the time in seconds) while the xi-
coordinates (with i = 1, 2, 3) denote the spatial coordinates. In flat spacetime with a
cartesian coordinate system the metric is

gµν =





























−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





























µν

(3.1)

This is called theMinkowski metric. Note that the sign convention is also often chosen
to be +1 for the time component and -1 for the spatial components. This is just a
convention. As another convention we shall denote spacetime indices with Greek
symbols α, β, µ, ν = 0, 1, 2, 3, while latin characters denote purely spatial coordinates:
i, j, k, l = 1, 2, 3. Finally, we always adopt the Einstein summation convention, i.e. we
sum over all indices that appear twice in a formula. In this way the length of a 3-vector
vi is |v|2 = gi jviv j and the length of a 4-vector uµ is |u|2 = gµνuµuν.

Any coordinate transformation that leaves the form of the metric of Eq. 3.1 intact is
called a Lorentz transformation (which includes rotations). We assume that you know
what these transformations are.

The spatial location xi of some observer as a function of time t is called the world line
of that observer, and is written as xi(t). At any time we can define the 3-velocity vi as

vi(t) =
dxi(t)
dt

(3.2)
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This velocity is limited by the light speed, i.e. gi jviv j < c2.

If we define the proper time τ as the time that the observer would measure him/herself
(i.e. the time on his/her own watch), then we can define the 4-velocity uµ as

uµ(t) =
dxµ(t)
dτ

(3.3)

and we have
gµνuµuν = −c2 (3.4)

Its energy-momentum 4-vector is

pµ = muµ (3.5)

For an observer that is moving at speeds very much slower than the light speed with
respect to our coordinate system we have uµ # (c + 1

2 v
2/c, v1, v2, v3)µ.

If we have not just one particle moving through our Minkowski spacetime, but a col-
lection of particles that together can be regarded as a gas, then we have to introduce
the stress-energy tensor Tµν.

Suppose that the matter is so cold that it has neglible pressure. Relativists call this
“dust”, though this should not be taken literally. The energy-momentum tensor for
“dust” with a density ρ and 4-velocity uν is

T µν = ρuµuν (3.6)

If in our current coordinate system, and at a given point P, the dust is not moving, then
the stress-energy tensor of this dust is thus:

T µν =





























ρc2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0





























(3.7)

If, however, our gas does have a pressure p, then the stress energy tensor becomes

T µν = ρuµuν + p
(

gµν + 1
c2 u
µuν
)

(3.8)

If in our current coordinate system, and at a given point P, the gas is not moving, then
the stress-energy tensor of this gas is thus:

T µν =





























ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p





























(3.9)

Note that the density ρ in this case includes thermal energy:

ρ = ρrestmass +
εthermal
c2

(3.10)

For non-relativistic matter the εthermal/c2 term is negligibly small, so one can write
ρ # ρrestmass. For isotropic radiation we have the other extreme: the ρrestmass = 0 so
that ρ = εthermal/c2. It turns out that for an isotropic radiation field we have

ρ =
εthermal
c2

=
3p
c2

(3.11)

Conservation of energy and momentum can be written compactly as
∂T µν

∂xν
≡ ∂νT µν ≡ T µν,ν = 0 (3.12)

Now let us place these concepts into GR. In GR we can always locally regard space-
time as a Minkowski spacetime; it is only globally that it becomes clear that spacetime
is curved by the presence of matter. So let us have a look at what “curved spacetime”
is by taking examples from “curved space” that we are familiar with.
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3.2 Curved space: An introduction to the concept
GR consists for 90% out of the mathematical characterization of curved spacetime.
The mathematical theory behind this is called Riemannian Geometry. So let us first get
some understanding of what “curved space” is. The easiest example is the 2-D surface
of a sphere. Take the Earth. As you know, if youmake a map of the earth on a flat sheet
of paper, there is no way to avoid geometric distortions. Usually the projections used
will strongly distort the north- and southpolar regions, making Siberia and Greenland
appear much larger than they really are. The surface of a sphere is therefore a 2-D
curved space. To measure the curvature you first have to be able to measure lengths
and distances. If you could see human beings on the map of the earth, you would
notice that their shape (as seen on the 2-D flat projection) is strongly stretched in
longitudinal direction. More mathematically: we introduce a metric, which can be
visualized as a unit circle, at every point on the surface. Now you see that the circles
near the polar region are (in the flat projection) ellipses that are strongly stretched in
longitudinal direction. By looking how these metric circles change between different
points on the map you can tell something about the spatial curvature. As we know, the
metric is a second-rank covariant tensor gi j. For a flat 2-D space (x, y) one would have

gi j =

(

1 0
0 1

)

i j
(3.13)

(if one chooses the coordinate system wisely). For the surface of the Earth, with
coordinate system (θ, φ), we would instead have a metric that depends on where you
are:

gi j = R2Earth

(

1 0
0 cos2 θ

)

i j
(3.14)

Here θ is the lattitude (in radians from the equator) and φ is the longitude (in randians
from Greenwich).

The metric is also often written as a line element ds. For flat 2-D space (x, y) we would
have:

ds2 = dx2 + dy2 (3.15)

while for the above surface of the Earth example we have:

ds2 = R2Earth(dθ
2 + cos2 θdφ2) (3.16)

For any space (curved or not) we can always find a coordinate system where the metric
becomes gi j = δi j (as in Eq. 3.13) at any single (!) point in space of your choice. But
where a curved space is different from a flat one is that for a curved space one cannot
find a global coordinate system for which gi j = δi j at all points at the same time, while
for flat space we can. This is the reason why we can always make a local map for any
place on Earth which looks undistorted. But as soon as we want to make a map of the
entire Earth, we always get distortions. A curved space, if we look at small enough
scales, looks approximately flat. Mathematically more complete: if we choose a point
P in space, then we can always find a coordinate system for which gi j = δi j and even
∂kgi j = 0, i.e. physically straight lines will also look approximately straight. However,
if space is curved one can usually not find a coordinate system for which, at that point
P, also the second derivatives ∂k∂lgi j are zero. The second derivatives of the metric
will, as we will see, contain information about the intrinsic curvature of space, i.e.
“physical curvature”, i.e. curvature that is not just a bad choice of coordinate system.

Now that we have seen some examples of 2-D curved spaces, let us from now on
immediately generalize this to 4-D curved spacetime! This works in exactly the same
way as we wrote above; just we replace the Latin indices with Greek indices.
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3.3 Defining “parallel transport” From here until end of this chapter ev-
erything is voluntary and will not be
part of the exam.

Now that we have a metric, and can thus measure distances in our space, we need
to get a better understanding of how the concept of “direction” is changed in curved
spaces. The way to do this is by defining the concept of “parallel transport” of vectors
and tensors. The simplest example is again the Earth’s surface. Suppose we make a
travel from some point A on the Equator to the North Pole, turn 90 degrees to the right,
travel back to the Equator, arriving there at point B, then turn again 90 degrees to the
right and travel back to point A. If, on our travel, we bring along a vector pointing
initially in the direction of our travel (i.e. pointing north). We keep the vector always
in the same direction (but horizontal). On the second leg of our trip the vector does
no longer point along the travel, but 90 degrees left. On the final leg, the arrow points
again along the direction of motion, but to the back. When we arrive back at A the
vector has changed direction by 90 degrees, even though we always faithfully kept the
vector non-rotating during out trip. This is an effect of the curvature of the surface of
the Earth. We will use this kind of “round trip” exercise to characterize this curvature
in Section 3.6.

But first we have to find a mathematical description of this parallel transport. For this
we need the first derivatives of the metric. Without proof, the parallel transport of a
vector vµ along an infinitesimal path in space dxα is given by

vµ(xα + dxα) = vµ(xα) − Γµρσvρ(xα)dxσ (3.17)

where Γαβγ is the Christoffel symbol also called the affine connection. It contains infor-
mation about how curved the coordinate system is, and is given (without proof) by the
following expression:

Γαβγ =
1
2
gαµ
(

∂gµγ

∂xβ
+
∂gµβ

∂xγ
−
∂gβγ

∂xµ

)

(3.18)

Note that Γαβγ = Γ
α
γβ. You can always choose a choose a coordinate system that at

some point P of your choice the Γαβγ = 0. However, for curved space one cannot find a
coordinate system where Γαβγ = 0 everywhere. A coordinate system which has Γ

α
βγ = 0

in some point P is, in general relativity, said to be a local inertial coordinate system:
the elevator of Einstein’s thought experiment.

3.4 Covariant derivative
In a flat space with a orthonormal coordinate system the derivative of a vector field vα
is given by

∂vα

∂xβ
(3.19)

The divergence is
∂vα

∂xα
(3.20)

However, if we use non-cartesian coordinates and/or if the space is curved, this simple
definition of the derivative is no longer very useful, because even a vector field that
is constant in space would yield non-constant derivative values because of the curved
coordinates / curved space.

The problem is: How do we faithfully compare two vectors that are located on two
nearby points (at point xµ + dxµ and point xµ)? The only clean way is to use parallel
transport: we transport the vector vα at point xµ in a parallel way to point xµ+dxµ, and
we can then compare it with the vector vα that is located at xµ + dxµ. We define the
covariant derivative as the derivative using this parallel transport method, and denote
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it with a capital D:

Dvα

Dxβ
=
vα(xµ + dxµ) − ParTrans[vα(xµ)]

dxβ

=
vα(xµ + dxµ) − vα(xµ) + Γανγvγ(xµ)dxν

dxβ

=
∂vα

∂xβ
+ Γαβγv

γ

(3.21)

where we have used, that dxν/dxβ = δνβ.

For convenience of notation we often write

∂vα

∂xβ
=: ∂βvα =: vα,β (3.22)

Dvα

Dxβ
=: ∇βvα =: vα;β (3.23)

We can now rewrite the conservations laws of energy and momentum in a curved
spacetime as

∇βTαβ ≡ Tαβ ;β = 0 (3.24)

and the conservation of mass as

∇µ(ρvµ) ≡ (ρvµ);µ = 0 (3.25)

3.5 A geodesic path through space(-time)
A geodesic path is a path through space(time) that is locally straight at every point.
Consider again the example of the Earth’s surface. If you walk in a manner that you
consider straight, your path will be a circle around the world: after about 40,000 km
you will arrive back at where you started from. A locally straight path xµ(τ) is defined
such that the direction vector vµ(τ) ≡ dxµ(τ)/dτ has zero covariant derivative along
the path:

Dvα(τ)
Dτ

:= vµ(τ)∇µvα(τ) = 0 (3.26)

Working this equation out:

vµ(τ)∇µvα(τ) = vµ(τ)∂µvα(τ) + vµ(τ)Γαµνvν(τ)

=
d2xα

dτ2
+ Γαµν

dxµ

dτ
dxν

dτ
(3.27)

so we get as our final equation the so called geodesic equation:

d2xα

dτ2
+ Γαµν

dxµ

dτ
dxν

dτ
= 0 (3.28)

While we derived Equation (3.28) for a geodesic through 3-D space, it is also valid in
4-D spacetime, and according to Einstein’s relativity principle, it describes the path
through spacetime of a free-falling particle. This equation is therefore one of the
cornerstones of general relativity. In this formalism τ is the time as it is measured by a
clock moving along this geodesic through spacetime. The normalization is then such
that

gµν
dxµ

dτ
dxν

dτ
= −c2 (3.29)
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3.6 Riemann-Christoffel curvature tensor
Now that we know how a free-falling body moves in 4-D spacetime, we must find the
equations for the structure of spacetime itself, or in other words for the metric gµν as a
function of spatial coordinates xα. Einstein postulated that the curvature of spacetime
must be locally related to the presence or absense of matter. We must therefore find a
mathematical description of curvature of spacetime. The Christoffel symbol describes
this in principle, but in itself it is not a measure of curvature of spacetime only: it also
measures the curvature of the coordinate system. In other words, Γαµν can be non-zero
even for flat space, if the coordinates are curved. Since gravity should not depend
on the choice of coordinates, it cannot be correct to merely use Γαµν as a description
of gravity. Moreover, one can always choose a coordinate system such that at some
point P in spacetime one has Γαµν = 0 even if the curvature of spacetime at point P is
decidedly non-zero.

To find a better measure of curvature of space(time) we must think of an experiment
that we can carry out in such space(time) that gives us an objective measure of cur-
vature of space(time). Remember the experiment with the vector that we parallelly
transport along a closed path we carried out in Section 3.3. Let us repeat this in a
more formal way.

Let us start with a vector vα located at point P given by coordinates xµ. Let us do an
infinitesimal step dxµ(1) in space(time), so that we arrive at x

µ+dxµ(1). We take the vector
vα along with us in a parallel transport manner. Nowwe take another infinitesimal step,
this time in direction dxµ(2), so we arrive at x

µ+dxµ(1)+dx
µ
(2), again taking v

α along with
us in a parallel transport manner. Let us call the vector vα that we have obtained in this
way vαI . According to the formulae of parallel transport (Section 3.3) this vector is:

vαI =
[

vα(xµ) − Γαβγ(x
µ)vγ(xµ)dxβ(1)

]

− Γαρσ(xµ + dx
µ
(1))
[

vσ(xµ) − Γσβγ(x
µ)vγ(xµ)dxβ(1)

]

dxρ(2)
= vα(xµ) − Γαβγ(x

µ)vγ(xµ)dxβ(1) − Γ
α
ρσ(xµ + dx

µ
(1))v

σ(xµ)dxρ(2)
+ Γαρσ(xµ + dx

µ
(1))Γ

σ
βγ(x

µ)vγ(xµ)dxβ(1)dx
ρ
(2)

(3.30)

Now let us repeat this, but in opposite order: First move along dxµ(2) and then along
dxµ(1). We obtain a vector v

α
II in this way, which, in curved space(time) is not necessar-

ily the same as vαI :

vαII =
[

vα(xµ) − Γαρσ(xµ)vσ(xµ)dx
ρ
(2)

]

− Γαβγ(x
µ + dxµ(2))

[

vγ(xµ) − Γγρσ(xµ)vσ(xµ)dx
ρ
(2)

]

dxβ(1)
= vα(xµ) − Γαρσ(xµ)vσ(xµ)dx

ρ
(2) − Γ

α
βγ(x

µ + dxµ(2))v
γ(xµ)dxβ(1)

+ Γαβγ(x
µ + dxµ(2))Γ

γ
ρσ(xµ)vσ(xµ)dx

ρ
(2)dx

β
(1)

(3.31)

The difference between these two vectors, to first order, is therefore

∆vα = vαII − v
α
I

=
[

Γαρσ,βv
σ − Γαβγ,ρv

γ + ΓαβγΓ
γ
ρσv
σ − ΓαρσΓ

σ
βγv
γ
]

dxβ(1)dx
ρ
(2)

=
[

Γαρσ,β − Γ
α
βσ,ρ + Γ

α
βγΓ
γ
ρσ − ΓαργΓ

γ
βσ

]

vσdxβ(1)dx
ρ
(2)

≡ Rασβρvσdxβ(1)dx
ρ
(2)

(3.32)

where we defined the Riemann-Christoffel curvature tensor:

Rασβρ ≡ Γαρσ,β − Γ
α
βσ,ρ + Γ

α
βγΓ
γ
ρσ − ΓαργΓ

γ
βσ (3.33)

This tensor is not just built out of the Christoffel symbols, but also out of their deriva-
tives. It turns out that this tensor contains all there is to know about the local curvature
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of space(time). If Rασβρ = 0 at all locations, then the space(time) is flat. Conversely,
if Rασβρ ! 0 at some points, then the space(time) is curved. You cannot transform
Rασβρ to 0 as you could with Γαµν. Therefore the Riemann-Christoffel curvature tensor
tells something about the curvature of space(time), but does not tell something about
the curvature of the local coordinate system. It therefore has a physical meaning in-
dependent of the coordinate system you choose, and we can therefore use it to define
the Einstein equations.

3.7 The Einstein equations
We now have a tensorial quantity that describes curvature of space(time) in a mean-
ingful way. To fulfill Einstein’s idea of relating this somehow to the matter content, we
must find a mathematically consistent way to relate Rασβρ to the energy-momentum
stress tensor T µν. First of all, we must therefore reduce the rank-4 tensor Rασβρ into a
rank-2 tensor. We define the Ricci tensor Rαβ as

Rαβ ≡ Rσασβ (3.34)

which is a symmetric tensor (Rαβ = Rβα), and the curvature R as

R ≡ gµνRµν (3.35)

Finally we define the Einstein tensor as

Gαβ ≡ Rαβ −
1
2
gαβR (3.36)

(note that Rαβ and Rαβ are trivially related to each other, see syllabus on tensor calcu-
lus).

Without further proof it turns out that

Gαβ;β = 0 (3.37)

This is the same property as that of the energy-momentum stress tensor T µν, which
also obeys T µν;ν = 0. This allows us to equate the two with some proportionality
constant in between. This brings us to the Einstein equation

Gµν =
8πG
c2

T µν (3.38)

This is a postulation, i.e., it cannot be derived in a rigorous way, but it turns out to be
able to describe gravity very well in the Newtonian limit. This is the central equation
of general relativity. Solving this equation for spacetimes with matter inside yields a
curved spacetime. With Eq. (3.28) one can then find out how particles move in this
spacetime, i.e. how they are affected by gravity.

When one is prepared to add new constants or fields to the system, then there can be
various alternative versions of the Einstein equations, the most well-known is the one
with a cosmological constant Λ:

Gµν =
8πG
c2

T µν − Λgµν (3.39)

One can regard Λ as some form of energy with negative pressure, because if we write
the above equation as

Gµν =
8πG
c2

[

T µν −
c2

8πG
Λgµν
]

≡
8πG
c2
[

T µν − Λ̃gµν
]

≡
8πG
c2

T̄ µν (3.40)

then, in a local interial frame, we have

T̄ µν =





























ρc2 + Λ̃ 0 0 0
0 p − Λ̃ 0 0
0 0 p − Λ̃ 0
0 0 0 p − Λ̃





























(3.41)
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