
Chapter 4

Friedmann-Robertson-Walker
Universe

To find solutions to the Einstein equations for our Universe, we must first make an
Ansatz: what do we think the metric could look like? This brings us to the Robertson-
Walker metric, in which certain factors will remain undetermined. To determine these,
and to test if the Robertson-Walker Ansatz is good in the first place, we insert this met-
ric into the Einstein Equations. This will then prove that the metric is indeed a good
Ansatz, and it will lead to constraints on the undetermined factors: The Friedmann
Equations. These equations are two simple first order ordinary differential equations.
Solutions to these equations yield the cosmological model we are interested in.

4.1 Robertson-Walker geometry of space
The Universe is homogeneous and isotropic. Isotropy means that the metric must be
diagonal. Because, as we shall see, space is allowed to be curved, it will turn out to
be useful to use spherical coordinates (r, θ, φ) for describing the metric. The center of
the spherical coordinate system is us (the observers) as we look out into the cosmos.
Let us focus on the spatial part of the metric. For flat space the metric is given by the
following line element:

ds2 = dr2 + r2(dθ2 + sin2 θ dφ2) (4.1)

where θ is now measured from the north pole and is π at the south pole. It is useful to
abbreviate the term between brackets as

dω2 = dθ2 + sin2 θ dφ2 (4.2)

because it is a measure of angle on the sky of the observer. Because the universe is
isotropic the angle between two galaxies as we see it is in fact the true angle from our
vantage point: The expansion of the universe does not change this angle. Therefore
we can use dω for the remainder of this lecture. So, for flat space we have

ds2 = dr2 + r2 dω2 (4.3)

It was proven by Robertson and Walker that the only alternative metric that obeys both
isotropy and homogeneity is:

ds2 = dr2 + fK(r)2 dω2 (4.4)

where the function fK(r) is the curvature function given by

fK(r) =



















K−1/2 sin(K1/2r) for K > 0
r for K = 0

K−1/2 sinh(K1/2r) for K < 0
(4.5)
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This means that the circumference of a sphere around us with radius r is, for K ! 0,
not anymore equal to C = 2πr but smaller for K > 0 and larger for K < 0. Also
the surface area of that sphere is no longer S = (4π/3)r3 but is smaller for K > 0
and larger for K < 0. For small r (to be precise, for r " |K|−1/2) the deviation from
C = 2πr and S = (4π/3)r3 is small, but as r approaches |K−1/2| the deviation can
become very large.

This is very similar to the 2-D example of the Earth’s surface. If we stand on the North
Pole, and use r as the distance from us along the sphere (i.e. the lattitudinal distance)
and dφ as the 2-D version of dω, then the circumference of a circle at r = 10000 km
(i.e. the circle is the equator in this case) is “just” 40000 km instead of 2π × 10000 =
62831 km, i.e. a factor of 0.63 smaller than it would be on a flat surface.

The constant K is the curvature constant. We can also define a “radius of curvature”

Rcurv = K−1/2 (4.6)

which, for our 2-D example of the Earth’s surface, is the radius of the Earth. In our 3-
D Universe it is the radius of a hypothetical (!) 3-D “surface” sphere of a 4-D “sphere”
in 4-D space.

Note that the metric given in Eq. (4.4) can be written in another way if we define an
alternative radius  r as  r ≡ fK(r). The metric is then:

ds2 =
d  r2

1 − K  r2 +  r2 dω2 (4.7)

Note that this metric is different only in the way we choose our coordinate r; it is not
in any physical way different from Eq. (4.4).

4.2 Friedmann Equations
We can now build our universe by taking for each point in time a Robertson-Walker
(RW) space. We allow the scale factor and the curvature of the RW space to vary with
time. This gives the generic metric

ds2 = −dt2 + a(t)2[dx2 + fK(x)2x2dω2] (4.8)

The function a(t) is the scale factor that depends on time and which will describe the
expansion (or contraction) of the universe. We use the symbol x instead of r because,
as we shall see, the radial coordinate in this form no longer has a meaning as a true
distance. Instead, the “true” distance r (though, as we shall see later, “true distance”
can have different definitions) would be r = a(t)x.

The scale factor a(t) is normalized such that at the present time we have by definition
a = 1, meaning that today we have r = x.

If we now insert Eq. (4.8) into the Einstein Equations (3.39), then we obtain, after
some tedious algebra, two equations:

( ȧ
a

)2
=

8πG
3

ρ −
Kc2

a2 +
Λ

3
(4.9)

ä
a
= −

4πG
3

(

ρ +
3p
c2

)

+
Λ

3
(4.10)

where the first equation is from the 00 component of the Einstein equations and the
second is from the ii component. These are the Friedmann Equations. The nice thing
is that after all the hard work we obtain, finally, a very simple set of ordinary differen-
tial equations.

The two Friedmann Equations can be combined to yield the adiabatic equation:
d
dt

(ρa3c2) + p d
dt

(a3) = 0 (4.11)
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which is the relativistic version of the first law of thermodynamics: TdS = dE+pdV =
0, if (as is reasonably well valid for the universe) the entropy is constant. One can see
this by taking the time derivative of Eq. (4.9) and using Eq. (4.11) to arrive at Eq. (4.9).

Usually people only use the first Friedmann equation plus an equation of state (i.e.
an integral of Eq. 4.11, see Section 4.4), and thus do not need the second Friedmann
equation. This makes all equations first order, which is easier to handle.

4.3 Relation to the Newtonian Universe
Note that the second Friedmann equation, Eq. (4.10), is the GR version of Eq. (2.37)
for the Newtonian Universe. You can see this by assuming that p " ρc2 (which
is valid for non-relativistic matter) and multiplying Eq. (4.10) by ax. If we identify
R(t) = xa(t) we obtain

R̈ = −
GM
R2 +

Λ

3
R (4.12)

which is identical to Eq. (2.37).

The first Friedmann equation, Eq. (4.9), is the GR version of the energy budget equa-
tion. If we multiply it with 1

2a
2x2 we obtain

1
2
Ṙ2 =

GM
R
+
Λ

6
R2 −

1
2
Kc2x2 (4.13)

If we follow a parcel of gas at location R and putΛ = 0, then the terms of this equation
have the following meaning:

Ekinetic = Egrav − Emissing (4.14)

where Ekinetic = Ṙ2/2 is the kinetic energy per gram of gas of the parcel, Egrav = GM/R
is the gravitational potential energy per gram and Emissing = Kc2x2/2 is the missing
kinetic energy for gravitational escape. If K > 0 then Ekinetic < Egrav and the expansion
is subcritical, i.e. the universe will collapse again; If K < 0 then Ekinetic > Egrav and
the universe will expand.

4.4 Scaling of relativistic and non-relativistic matter
Let us have a closer look at the adiabatic equation Eq. (4.11). Note that this equation
is strictly speaking only valid if no entropy is generated, but it turns out to be a good
approximation.

Let us look at the limiting case of cold matter, i.e. matter for which the pressure

p " ρc2 (for cold matter) (4.15)

In that case Eq. (4.11) reduces to

d
dt

(ρa3) = 0 (4.16)

which means that the equation of state for such cold matter is

ρ ∝
1
a3 (for cold matter) (4.17)

If we look at the other limiting case, of ultrarelativistic matter, we have the maximum
possible relativistic isotropic pressure, which is

p =
ρc2

3
(for ultra-hot matter, radiation) (4.18)
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Neutrinos are expected to have velocities very close to the light speed, so that they
obey Eq. (4.18). Photons have exactly the light speed, so they obey Eq. (4.18) exactly.
Eq. (4.11) now reduces to

d
dt

(ρa3c2) + ρc
2

3
d
dt

(a3) = 0 (4.19)

which works out to

ρ ∝
1
a4 (for ultra-hot matter, radiation) (4.20)

We will assume, from now on, that there exists only cold matter and radiation in our
universe, so nothing in between.

4.5 The Critical Density, and the dimensionless Friedmann equa-
tion

4.5.1 The critical density

In Chapter 2 we already realized that there is a critical expansion velocity, for any
given density of the universe. Observationally, however, we tend to know the expan-
sion velocity of the Universe at the present time (i.e. the Hubble constant), but it is
much harder to measure the density of the Universe, because as we know, much of the
matter is dark. So the critical velocity in fact turns into a critical density. The way to
define this is to start from the first Friedmann equation, Eq. (4.9) and write it in the
following form:

H2 =
8πG

3
(

ρ + ρΛ
)

−
Kc2

a2 (4.21)

with the Hubble “constant” H = ȧ/a, and we wrote Λ as ρΛ according to:

ρΛ ≡
Λ

8πG
(4.22)

The density ρ can be written as contributions from “matter” (baryons and cold dark
matter) and “radiation”:

ρ = ρm + ρr (4.23)

We can go even further, by writing the matter density as baryonic matter and cold dark
matter:

ρm = ρb + ρcdm (4.24)

and by writing the radiation as consisting of photons and neutrinos:

ρr = ργ + ρν (4.25)

But for the moment we will keep ρm and ρr because for their scaling with a the ρb
and ρcdm behave identically, and so do ργ and ρν. The first Friedmann equation then
becomes:

H2 =
8πG

3
(

ρm + ρr + ρΛ
)

−
Kc2

a2 (4.26)

If we define the critical density ρcrit as

ρcrit =
3H2

8πG
(4.27)

then we see that if the total density ρm +ρr +ρΛ equals the critical density, then K = 0,
meaning that the universe is flat. By the equivalence of curvature and expansion rate
this also means that the universe expands critically. The critical density is therefore
the density at which the universe expands critically, given the value for H.
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4.5.2 Dimensionless Friedmann equation

If we define H0 as the Hubble “constant” at the present time and ρcrit,0 as the critical
density at the present time, then the first Friedmann equation becomes:

H2 = H2
0

(

ρm
ρcrit,0

+
ρr
ρcrit,0

+
ρΛ
ρcrit,0

)

−
Kc2

a2 (4.28)

At this point it is convenient to introduce the following dimensionless densities:

Ωm(a) =
ρm(a)
ρcrit(a)

(4.29)

Ωr(a) =
ρr(a)
ρcrit(a)

(4.30)

ΩΛ(a) =
ρΛ(a)
ρcrit(a)

(4.31)

The values of these quantities at the present time are denoted as Ωm,0, Ωr,0 and ΩΛ,0.

It is convenient to introduce ΩK(a), resp. ΩK,0 at this point. If we consider the first
Friedmann equation at the present time:

H2
0 = H

2
0
(

Ωm,0 +Ωr,0 +ΩΛ,0
)

− Kc2 (4.32)

we can evaluate the curvature in terms of H0, Ωm,0, Ωr,0 and ΩΛ,0:

Kc2 = H2
0
(

Ωm,0 +Ωr,0 +ΩΛ,0 − 1
)

(4.33)

So if we define the “curvature density” ΩK,0:

ΩK,0 ≡ −
Kc2

H2
0
= 1 −Ωm,0 −Ωr,0 −ΩΛ,0 (4.34)

we get that all Ωs add up to 1. In analogy to Eqs. (4.29, 4.30, 4.31) we can define
ΩK(a) in terms of a “curvature density”:

ΩK(a) =
ρK(a)
ρcrit(a)

(4.35)

TheΩ symbols can be used to rewrite the Friedmann equation. For this, we must know
the equations of state of matter and radiation. We already discussed them in Section
4.4: The matter density goes as 1/a3. Radiation as 1/a4. The ΩΛ stays constant. The
ΩK goes, according to Eq. (4.34), as 1/a2. So we can write:

H2 = H2
0

(

Ωm,0

a3 +
Ωr,0

a4 +ΩΛ,0 +
ΩK,0

a2

)

= H2
0E

2(a)
(4.36)

(note that at the present time a = 1). This is the form of the Friedmann equation
that is usually used, because it contains essentially all the information we need. If we
have measured H0 we can calculate ρcrit,0 via Eq. (4.27). We must then measure ρm,0,
ρr,0 and Λ from which we directly obtain Ωm,0, Ωr,0 and ΩΛ,0. The ΩK,0 then follows
immediately from Eq. (4.34). We now have an equation (Eq. 4.36) that is fully self
contained, and we can (numerically or analytically) integrate it to get the evolution of
the universe.

4.5.3 Behavior of Ωm, Ωr, ΩΛ and ΩK as a function of a

In Eq. (4.36) we expressed the Friedmann equation in terms of the Ω-values and the
Hubble constant as they are at the present time. But sometimes it is useful to also
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know how the values of Ωm(a), Ωr(a), ΩΛ(a) and ΩK(a) behave for a ! 0. Although
Eq. (4.36) appears to suggest that e.g. Ωm(a) ∝ 1/a3, this is not the case! The 1/a3

behavior of the first term in Eq. (4.36) is because the entire part between brackets is
multiplied by H2

0 , not by H2. So indeed, for a ! 1

Ωm,0

a3 +
Ωr,0

a4 + ΩΛ,0 +
ΩK,0

a2 ! 1 for a ! 1 (4.37)

But by the definition of theΩs in Eqs. (4.29, 4.30, 4.31, 4.35) we have at all times (i.e.
for all values of a):

Ωm(a) +Ωr(a) + ΩΛ(a) +ΩK(a) = 1 (4.38)

This means that the behaviors of Ωm(a), Ωr(a), ΩΛ(a) and ΩK(a) are somewhat com-
plex.

As an example let us work out the behavior ofΩm,0 andΩΛ,0 in a Universe withΩK = 0
and Ωr = 0. We have

Ωm(a) =
ρm(a)
ρcrit(a)

and ΩΛ(a) =
Λ

ρcrit(a)
(4.39)

We know that Λ is constant in time and we know that

ρm(a) =
ρm,0
a3 (4.40)

We also know that
Ωm(a) +ΩΛ(a) = 1 (4.41)

which leads to
ρm,0

a3ρcrit(a)
+
Λ

ρcrit(a)
= 1 (4.42)

With this equation we can express ρcrit(a) as

ρcrit(a) =
ρm,0
a3 + Λ (4.43)

which leads to

Ωm(a) =
ρm,0
a3

1
ρm,0
a3 + Λ

(4.44)

ΩΛ(a) = Λ
1

ρm,0
a3 + Λ

(4.45)

Equivalently, you can also express these in terms of Ωm,0 and ΩΛ,0:

Ωm(a) =
Ωm,0

a +Ωm,0(1 − a) +ΩΛ,0(a3 − a)
(4.46)

ΩΛ(a) =
ΩΛ,0a3

a +Ωm,0(1 − a) +ΩΛ,0(a3 − a)
(4.47)

Just keep in mind that these equations only hold whenΩr = ΩK = 0 (or if these values
are very small).

4.6 Simple Universe Models
If the Universe were to consist of only one of the four kinds of “matter” in Eq. (4.36)
then it is easy to integrate the Friedmann equation analytically. Let us do this here.

25



4.6.1 Matter-dominated Flat Universe

If Ωm,0 = 1 and Ωr,0 = ΩΛ,0 = ΩK,0 = 0 then Eq. (4.36) becomes

ȧ
a
= H0

1
a3/2 (4.48)

which has as a solution (with a = 0 at the time of the Big Bang t = 0):

t =
2a3/2

3H0
↔ a(t) =

(

3
2
H0t

)2/3

(4.49)

This is an expanding Universe in which the expansion rate is inversely proportional to
time: H(t) = 2/3t, i.e. it is a decellerating Universe. According to this model the age
of the Universe would be t = 2/3H0 which amounts to 9.26 × 109 years. This is the
Einstein-de Sitter model of the Universe.

4.6.2 Radiation-dominated Flat Universe

If Ωr,0 = 1 and Ωm,0 = ΩΛ,0 = ΩK,0 = 0 then Eq. (4.36) becomes

ȧ
a
= H0

1
a2 (4.50)

which has as a solution (with a = 0 at t = 0):

t =
a2

2H0
↔ a(t) = (2H0t)1/2 (4.51)

Like the matter-dominated Universe the radiation-dominated Universe expands but
decellerates: H(t) = 1/2t. The age of the Universe would be t = 1/2H0 which amounts
to 6.94 × 109 years.

This demonstrates a peculiar phenomenon: Pressure apparently does not help to coun-
teract the decelleration due to gravity, as one would perhaps think. The reason is that
only a pressure gradient can induce a force. Since there is no pressure gradient in a ho-
mogeneous Universe, pressure cannot help expand the universe. Instead: matter with
pressure is even more effective at decellerating the Universe than cold matter. This
is because in addition to ρ there is also an additonal 3p/c2 in the second Friedmann
equation, Eq. (4.10). This is a purely relativistic effect.

4.6.3 Λ-dominated Flat Universe

If ΩΛ,0 = 1 and Ωm,0 = Ωr,0 = ΩK,0 = 0 then Eq. (4.36) becomes

ȧ
a
= H0 (4.52)

This does not have a solution that obeys a = 0 at t = 0. Instead it produces an
exponentially expanding Universe:

a(t) = eH0t (4.53)

where in this case we take t = 0 to be today. The age of the Universe is infinite, in this
case.

4.6.4 Empty Universe

If the Universe would have a matter content that is very much smaller than the critical
density, we can approximate Ωm,0 ' Ωr,0 ' ΩΛ,0 ' 0 and we have ΩK,0 ' 1. Then
Eq. (4.36) becomes

ȧ
a
=
H0

a
(4.54)
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Age of the Universe t0 13.75 ± 0.11 Gyr
Hubble constant H0 70.4 ± 1.4 km/s/Mpc
Baryon density Ωb,0 0.0456 ± 0.0016
Cold dark matter density Ωcdm,0 0.227 ± 0.014
Cosmological constant ΩΛ,0 0.728 ± 0.016
Redshift of radiation/matter equality zeq 3232 ± 87
Critical density ρcrit,0 9.3 × 10−30 g/cm3

Total matter density Ωm,0 0.273 ± 0.014
Total radiation density (photons and neutrinos) Ωr,0 8.44(±0.5)× 10−5

Curvature density ΩK,0 0 ± 0.02

Table 4.1: Cosmological constants derived from 7 years of WMAP, from Jarosik et
al. (2011, ApJS 192, 14). Used here is the “WMAP+BAO+H0” column of table 8
of that paper. Everything below the line is derived from the parameters above the
line. Equations used are Ωm,0 = Ωb,0 + Ωcdm,0, Ωr,0 = Ωm,0/(1 + zeq) and ΩK,0 =
1 − Ωm,0 − Ωr,0 − ΩΛ,0. Note that Ωb,0 = ρb,0/ρcrit,0 and Ωcdm,0 = ρcdm,0/ρcrit,0.

which has as a solution (with a = 0 at t = 0):

a(t) = H0t (4.55)

This is a Universe in which everything is moving ballistically away from us with
a constant velocity. The age of the Universe is then identical to the Hubble time,
i.e. t = 1/H0 which is 1.39 × 1010 years. The Universe is then not flat anymore.
The constant of curvature K is then K = −5.8 × 10−57 cm−2 which gives a radius of
curvature of Rcurv = 4.26 × 109 parsec.

4.7 The Standard Model of the Universe
The current paradigm is that the Universe is flat ΩK,0 ' 0, but contains matter, radia-
tion and has a non-zero cosmological constant. The latter is presumably a consequence
of so-called dark energy (more on that later in this lecture). In table 4.1 the parameters
of this standard model are listed.

One can see that we are currently dominated byΛ by a factor of three. This means that
we are now in a phase of exponential growth! But before about z ! 0.5 the Universe
was dominated by cold matter, and before about z ! 3200 the Universe was dominated
by radiation.

The integration of Eq. (4.36) with three of four terms non-zero is, unfortunately, not
possible analytically. A numerical integration is required. But for the radiation-
dominated phase and for the matter-dominated phase of the Universe we can use
(adapted versions of) the solutions of Section 4.6 as an approximation. So, for the
early radiation-dominated phase we approximate the solution by

a(t) '
(

2H0
√

Ωr,0 t
)1/2

(radiation-dominated era) (4.56)

The
√

Ωr,0 factor comes in because if we insert a " 10−4 into Eq. (4.36) the other three
terms vanish, but the factor Ωr,0 remains. The early radiation-dominated Universe
expanded as a ∝

√
t.

Likewise, for the matter-dominated era we get approximately

a(t) '
(

3
2
H0

√

Ωm,0 t
)2/3

(matter-dominated era) (4.57)

The later matter-dominated Universe expanded as a ∝ t2/3.
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The transition from the radiation-dominated era to the matter-dominated era occurs
when Ωm,0/a3 = Ωr,0/a4, which is at a = 0.00031. Inserting this into Eq. (4.56) yields
a time of roughly 7 × 104 years after the Big Bang.

The late Universe (z =few until z = 0), in which both matter and Λ are important but
radiation is unimportant, can also be integrated analytically. This is fortunate because
it is during this period that most of the structure formation in the Universe occurs (as
we shall discuss later), and it is the era which we can most readily observe. So let us
take 0 < Ωm,0 < 1 and ΩΛ,0 = 1−Ωm,0, and set Ωr,0 = 0 and ΩK,0 = 0. Eq. (4.36) then
becomes

1
a
da
dt
= H0

√

Ωm,0

a3 +ΩΛ,0 (4.58)

which can be integrated as

t =
1
H0

∫ a

0

da′

a′
√

Ωm,0/a′3 +ΩΛ,0
=

1
H0

∫ a

0

√
a′da′

√

Ωm,0 +ΩΛ,0a′3
(4.59)

By substituting x = a3/2 this can be integrated to

t =
2

3H0
√

1 −Ωm,0
arcsinh

















√

1 − Ωm,0
Ωm,0

a3/2

















(4.60)

One can verify that for small a this formula approaches Eq. (4.57) and that for a * 1
(i.e. far into the future) this formula describes an exponentially expanding Universe.
Eq. (4.60) is very accurate for all redshifts up to, say, z ' 1000. That means that we
can also use it to accurately estimate the age of the Universe: we simply insert a = 1
into Eq. (4.60) and we obtain, with Ωm,0 = 0.273 an age of 13.7 Gyr.

4.8 Light propagation through the Universe
If we observe a galaxy at some redshift z, we may want to know how the light has
moved through the Universe from that galaxy to us. This is not a trivial question
because the light moves through the Universe while the Universe is expanding. Let
us try to calculate the coordinate distance (comoving distance) of that galaxy as a
function of its redshift:

x(z) =
∫ x(z)

0
dx = −

∫ t0

t(z)

(

dx
dt

)

dt = −
∫ 1

a(z)

(

dx
dt

) (

dt
da

)

da (4.61)

We know what a(z) is: a(z) = 1/(1 + z). We also know that for light propagating
toward us

dx
dt
= −

dx
dr
dr
dt
=
c
a

(4.62)

We thus obtain
x(z) =

∫ 1

a(z)

cda
aȧ

(4.63)

With Eq. (4.36) we can eliminate ȧ in favor of E(a):

x(z) = c
H0

∫ 1

a(z)

da
a2E(a)

(4.64)

We can numerically integrate this for a general universe. Note that if we replace
the integration domain with arbitrary astart and afinish we can calculate the δx of light
propagation between astart and afinish.
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4.9 Distances
In an expanding Universe it is not trivial to define distances. We will define several
different kinds of distance here. Since all the current evidence today points to a flat
universe, we will assume a flat universe from now on. We will be interested to measure
the distance of some object at redshift z to us (redshift z = 0).

4.9.1 Comoving distance Dcom

The comoving distance to some object at coordinate distance x is the spatial distance
within a t =const spatial hypersurface:

Dcom(x, t) = r(t) = a(t)x (4.65)

This is the intuitive way of defining distance, but it is not directly measurable, because
light does not travel at infinite speed. Also, we typically measure the redshift of the
object, so instead of Dcom(x, t) we would like to know Dcom(z, t). If we take the current
time (a = 1) then we can use Eq. (4.64) and obtain

Dcom(z) = x(z) = c
H0

∫ 1

a(z)

da
a2E(a)

(4.66)

The comoving distance to the Big Bang (excluding inflation) can be obtained by nu-
merical evaluation of Eq. (4.66) with a(z) = 0. This yields Dcom(z→ ∞) = 1.43×1010

parsec, which is about 3.37 times rH .

4.9.2 Proper distance Dprop

The proper distance to some object is the distance measured by the time it takes for
light from that object to reach us. Analogous to Eq. (4.61) we write the time t(z) when
the light was emitted as an integral between t(z) and the present time t0:

t(z) = t0 −
∫ t0

t(z)
dt = t0 −

∫ 1

a(z)

(

dt
da

)

da = t0 −
∫ 1

a(z)

da
ȧ

= t0 −
1
H0

∫ 1

a(z)

da
aE(a)

(4.67)

The distance is then

Dprop(z) = c(t0 − t(z)) =
c
H0

∫ 1

a(z)

da
aE(a)

(4.68)

Note that for the late universe (z " 1000) in which only cold matter and Λ dominate,
this integral happens to be very similar to the integral of Eq.(4.59) for the age of the
universe. So the analytical solution for z" 1000 is

Dprop(z) = 2
3
√
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(4.69)

4.9.3 Angular distance Dang

In a non-expanding flat space the distance to some galaxy can be estimated from the
angular size ∆ω on the sky, if we know what the true diameter S in units of centimeters
of the galaxy is. Since ∆ω " 1 we can then write

Dang =
S
∆ω

(4.70)
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We define the angular distance Dang with Eq. (4.70) even when the Universe expands,
i.e. it is the distance that the galaxy would have if the universe were static.

If we do not know the true size S and/or if we can not spatially resolve the angular
size ∆ω on the sky, then we need to determine Dang using the redshift z. To do this let
us first compute what ∆ω would be of a “galaxy” that is gravitationally unbound, i.e.
a “galaxy” for which the size S (t) scales linearly with a(t). The solid angle ∆ω that
that object has on the sky would then be completely independent of time: In 10 billion
years it would still have the same solid angle on our sky. In that case we can, in the
spatial hypersurface of today (t = t0), relate S (t0) to ∆ω via the comoving distance
Dcom(t0) via

Dcom(t0, z) =
S (t0)
∆ω

(4.71)

where we assume here that the Universe is flat. Now, with our assumption that S (t) ∝
a(t) we can replace S (t0) with S (ti) (where ti is the time when the light was emitted):

S (ti) = a(ti)S (t0) = a(z)S (t0) (4.72)

where S (ti) is the size of the galaxy when the light was emitted. Eq. (4.71) then
becomes

Dcom(t0, z) =
S (ti)
a(z)∆ω

(4.73)

Now we have eliminated any reference to the time-evolution of the galaxy size S (t).
Only the size of the galaxy at the time of emitting its radiation is relevant here.
Eq. (4.73) therefore also holds if the galaxy stays the same size or merely changes
size very slowly (which is, of course, a much more realistic assumption). If we define
the size S as S := S (ti) and Dcom(z) := Dcom(t0, z) (as we did in Section 4.9.1) then
Eqs. (4.73, 4.70) can be combined to give:

Dang(z) = a(z)Dcom(z) (4.74)

We can use Eq. (4.74) also to compute the size S if we measure its angular size ∆ω
and redshift z.

Note that around z ' 1.5 the angular distance Dang(z) reaches a maximum and then
decreases again. This means that if we take a galaxy of given size S and we put it at
increasing distance z, then before z ' 1.5 its angular size ∆ω decreases as expected,
but beyond z ' 1.5 its angular size increases again!

4.9.4 Luminosity distance Dlum

Analogously to the angular distance, we can also make a luminosity distance, defined
as if the space were static and euclidian. The observed flux F of a galaxy with surface
brightness B, surface area A at a distance D in Euclinian space is

F = BΩ = B
A
D2 (4.75)

where Ω = A/D2 is the solid angle of the galaxy on the sky.

In an expanding Universe, however, the brightness B is diluted due to redshift (giving
a factor of a), due to the scaling of the surface area of the camera (giving a factor of
a2) and due to the reduction of the rate of arrival of photons (giving a factor of a).
This means that the flux F we observe today from a galaxy at redshift z is related to
the brightness of the galaxy in the past by the following relation:

F = a(z)4BΩ = a(z)4B
A
D2

ang
(4.76)
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where B is the brightness of the galaxy at the time it emitted its radiation. The symbol
Ω is the solid angle of the galaxy as we observe it today, so we use Ω = A/D2

ang. If we
use Eq. (4.75) as the definition of Dlum we then obtain

Dlum(z) = 1
a(z)2Dang (4.77)

So the luminosity distance tends to be much larger than the angular distance because
the galaxy becomes extremely dim at large redshift. Eq. (4.77) is called the “Ether-
ington relation” and is valid very generally, also for non-flat universes.

4.9.5 Distances in the low-redshift Universe

For z " 1 all four distance measures converge to

Dlum(z) ' Dang(z) ' Dcom(z) ' Dprop(z) ' cz
H0
+ O(z2) (4.78)

4.10 Horizons
From Eq. (4.59) we can see that the Universe has a definite age. That means that there
is also a maximum distance that light could have travelled during that time: ctage.
More importantly, it means that light could have travelled also only a finite coordinate
(comoving) distance xmax, given by Eq. (4.64) with a(z) = 0. Any light emitted in the
part of the Universe beyond the coordinate distance xmax can not yet have reached us.
It is so-to-speak behind the particle horizon.

Let us verify this for the early Universe. As t → 0 and a → 0 the only term in
Eq. (4.36) that survives is the radiation term. But let us be more general, and take
Ω0/an instead of Ωr,0/a4. So we obtain

E(a) =
√
Ω0

an/2
(4.79)

Inserting this into Eq. (4.66) for the comoving distance we obtain

Dcom(z→ ∞) = c
H0
√
Ω0

∫ 1

0

da
a2−n/2 =

c(n/2 − 1)−1

H0
√
Ω0

[

an/2−1
]1

0
(4.80)

For n > 2 this converges to a finite number:

Dcom(z→ ∞) =
c(n/2 − 1)−1

H0
√
Ω0

(4.81)

which is the particle horizon. This is the case for our Universe, as the Early universe
is radiation-dominated, i.e. n = 4. For n ≤ 2 this integral diverges, meaning that there
is no horizon1.

The particle horizon expands with the light speed, so more and more of the Universe
becomes visible as time goes by. Unless, however, the Universe expands so fast that
this counter-acts this expansion of the particle horizon. To verify if this can happen,
let us again take a general powerlaw equation of state (i.e. Ω0/an) and calculate the
Dcom from today into the infinite future a→ ∞:

Dcom(a→ ∞) =
c

H0
√
Ω0

∫ 1

∞

da
a2−n/2 = −

c(n/2 − 1)−1

H0
√
Ω0

[

an/2−1
]∞

1
(4.82)

1Note the interesting fact that for 0 < n < 2 the comoving distance to the horizon Dcom(z→ ∞) diverges
(i.e. there is no horizon), but the proper distance Dprop(z→∞) is finite, i.e. the age of the Universe is finite.
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Note that this is negative, because it is a distance into the future. For n < 2 this
converges to a finite number:

Dcom(a→ ∞) = −c(1 − n/2)−1

H0
√
Ω0

(4.83)

meaning that any light that we send out today will only ever be seen by a finite portion
of the universe. Conversely: only the light that is sent out today by galaxies within
this distance will ever be seen by us. This is called the event horizon.

As we discussed before: we are currently in transition from a matter-dominated Uni-
verse to a Λ-dominated Universe, with the Λ already dominating over matter by a
factor of about 3. This will only get worse in the future, meaning that we are entering
an era of exponential expansion, i.e. with n = 0. This means that there is an event
horizon for our future Universe.

Note also that for an exponentially expanding Universe, the distance to this event
horizon remains constant in time, even though the Universe expands. This means that
galaxies that are now inside this event horizon will eventually pass through the event
horizon and they will then be effectively out of sight forever.
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