
Chapter 10

Coordinate systems and gridding
techniques

So far we have assumed that we are doing modeling in a cartesian coordinate system with a
rectangular mesh. For many applications this is, however, too restrictive. For instance, in as-
trophysics, if we are interested in modeling the hydrodynamics of a rotating star or a rotating
collapsing molecular cloud core, then we know (or assume) beforehand that our solution will
be nearly spherical, and that we are modeling deviations from such a spherical distribution. It
is then clear that a polar coordinate system (r, θ,φ) (often also called a “spherical coordinate
system”) is better and easier to use. Another example is if we wish to study axisymmetric sys-
tems. In this case we can restrict ourselves to two dimensions: (r, θ) in polar coordinates or
(r, z) in cylindrical coordinates. Since 2-D calculations are very much faster than 3-D ones, this
choice of coordinates saves a lot of computing time for such problems. Therefore non-cartesian
coordinates are very often used, in particular in astrophysics.

But sometimes the useage of a different coordinate system does not help. For instance,
in astrophysics, if we want to model the collapse of a complex and clumpy molecular cloud,
in which a number of clumps contract enormously and eventually become stars. No choice of
coordinate system helps here. One must refine the grid around each clump in an adaptive (time-
dependent) way. For this type of gridding problem astrophysicists typically use Adaptive Mesh
Refinement (AMR).

A more down-to-earth example is the flow of gas or fluid around obstacles, such as the flow
of air around a wing or around a racing car. The shape of the obstacle is typically too complex to
warp a particular coordinate system around it. On the other hand, if we try to solve this problem
on a cartesian grid, then the obstacle surfaces are jagged surfaces (like a slope of a hill created
with LEGO blocks). These jagged surfaces tend to produce disturbances that, in high Reynolds
number flows, can really cause havoc in the solution. In these cases special purpose unstructured
grids are used.

In this chapter we will touch upon all three issues (the polar coordinate system, AMR tech-
niques and unstructured grids), but we will be rather brief. We will concern ourselves only with
Riemann solvers, but much of the philosophy can be directly transferred to classical hydrody-
namics schemes as well.

NOTE: This chapter is written very recently, so there may still be errors in the equations.
Beware.
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10.1 Hydrodynamics in the polar coordinate system
10.1.1 A scalar conservation law in polar coordinates
There are two popular non-cartesian coordinate systems that are often used: cylindrical coordi-
nates (r,φ, z) and polar/spherical coordinates (r, θ,φ). In this section we will focus on the polar
coordinate system. The equations for cylindrical coordinates can be derived from these by taking
z ! (π/2 − θ) r and taking the limit z # r to remove all sine and cosine factors (and once the
equations are derived, z can again be large).

The coordinates are: r > 0, the radial coordinate, 0 ≤ θ < π the polar coordinate (θ = 0
is the north pole, θ = π is the south pole and θ = π/2 is the equatorial plane), and 0 ≤ φ < 2π
the azimuthal coordinate. Let us define $u the velocity vector and (u, v, w) its components in r, θ
and φ directions.

Each grid point (ri, θj,φk) is at the center of a cell. A cell is given by: ri−1/2 ≤ r <
ri+1/2, θj−1/2 ≤ θ < θj+1/2, φk−1/2 ≤ φ < φk+1/2. The cell walls in r and θ direction are
curved while the cell walls in φ direction are straight surfaces. This curvature will turn out to
produce new terms in the momentum equations, but let us first look at how we can formulate a
scalar conservation problem in polar coordinates. The partial differential equation for a scalar
conservation law in polar coordinates is:

∂q

∂t
+ ∇ · (q$u) = 0 =

∂q

∂t
+

1

r2

∂(r2qu)

∂r
+

1

r sin θ

∂(sin θ qv)

∂θ
+

1

r sin θ

∂(qw)

∂φ
= 0 (10.1)

As one can see, there are various geometric factors involved.
One can easily see how these factors arise if one derives a discrete version of this conser-

vation equation. Consider a cell (i, j, k) given by ri−1/2 ≤ r < ri+1/2, θj−1/2 ≤ θ < θj+1/2 and
φk−1/2 ≤ φ < φk+1/2. The volume of this cell is:

Vi,j,k =
1

3
(r3

i+1/2 − r3
i−1/2)(cos θj−1/2 − cos θj+1/2)(φk+1/2 − φk−1/2) (10.2)

The i + 1/2 surface of the cell in r-direction (i.e. an r =constant surface) is:

S(r),i+1/2,j,k = r2
i+1/2(cos θj−1/2 − cos θj+1/2)(φk+1/2 − φk−1/2) (10.3)

and similar for i− 1/2. The j + 1/2 surface of the cell in θ-direction (i.e. a θ =constant surface)
is:

S(θ),i,j+1/2,k =
1

2
(r2

i+1/2 − r2
i−1/2) sin θj+1/2(φk+1/2 − φk−1/2) (10.4)

and similar for j−1/2. The k+1/2 surface of the cell in φ-direction (i.e. a φ =constant surface)
is:

S(φ),i,j,k+1/2 =
1

2
(r2

i+1/2 − r2
i−1/2)(θj+1/2 − θj−1/2) (10.5)

and identical for k − 1/2.
If we now difference the equations in a conservative form:

∂(qi,j,kVi,j,k)

∂t
= Fi−1/2,j,kS(r),i−1/2,j,k − Fi+1/2,j,kS(r),i+1/2,j,k

+ Fi,j−1/2,kS(θ),i,j−1/2,k − Fi,j+1/2,kS(θ),i,j+1/2,k

+ Fi,j,k−1/2S(φ),i,j,k−1/2 − Fi,j,k+1/2S(φ),i,j,k+1/2

(10.6)
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where F is the flux for q. Eq.(10.6) is the conservatively discretized form of the scalar conser-
vation equation in a general coordinate system. With Eqs.(??) inserted into Eq.(10.6), we obtain
the conservatively discretized form of the scalar conservation equation in polar coordinates.

For use later in this chapter, let us introduce∆r, ∆θ, and ∆φ, as well as Sr, Sθ and Sφ, and
finally Fr, Fθ and Fφ such that Eq. (10.6) for polar coordinates can be written as:

∂(qi,j,kVi,j,k)

∂t
+ (∆rFrSr)i,j,k + (∆θFθSθ)i,j,k + (∆φFφSφ)i,j,k = 0 (10.7)

Here the∆r symbol denotes that a difference is computed of the argument (here: FrSr) between
its value at the i + 1/2 interface and the i − 1/2 interface. Same for θ and φ.
→ Exercise: Derive, from this discrete form of the conservation equation, the differential form

of the equation, Eq. (10.1).

10.1.2 The Euler equations in polar coordinates
The discretized conservation law in the form Eq.(10.6) (or equivalently Eq.(10.7)) is the form
of the equation which we use for our Riemann solvers for hydrodynamics. Because Riemann
solvers by definition produce an interface flux (Fi+1/2,j,k, Fi,j+1/2,k or Fi,j,k+1/2), this form of
the conservation equation lends itself perfectly for Riemann solvers. One simply substitutes the
scalar qi,j,k with (ρetot, ρu, ρv, ρw, ρ)i,j,k and the scalar fluxes Fi+1/2,j,k, Fi,j+1/2,k and Fi,j,k+1/2

with the fluxes from the Riemann problems in each of these directions. This is indeed the way
we can implement Riemann solvers in non-cartesian coordiantes. However, this is unfortunately
not yet the full story.

The above derivation only holds for scalar quantities. Indeed, ρ and ρetot are scalars, and
both obey Eq. (10.1):
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(10.8)

and

∂ρetot
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=
∂ρetot

∂t
+

1

r2

∂(r2ρhtotu)

∂r
+

1
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+

1
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∂(ρhtotw)

∂φ
= 0

(10.9)

Both these equations can indeed be solved using the discrete formwe derived above (see Eq. 10.6).
These give for the density equation:

∂(ρV )i,j,k

∂t
+ (∆rFρrSr)i,j,k + (∆θFρθSθ)i,j,k + (∆φFρφSφ)i,j,k = 0 (10.10)

where Fρr, Fρθ and Fρφ are the Riemann fluxes for the density. For the energy equation:

∂(ρetotV )i,j,k

∂t
+ (∆rFρetotrSr)i,j,k + (∆θFρetotθSθ)i,j,k + (∆φFρetotφSφ)i,j,k = 0 (10.11)

where Fρetotr, Fρetotθ and Fρetotφ are the Riemann fluxes for the energy.
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However, for the momentum components ρu, ρv and ρw this is not the case. These three
form the r, θ and φ components of the momentum vector $p, which is sensitive to spatial direction.
Now here comes the difficulty: Suppose one has a momentum vector $p1 = (1, 0, 0) at location
(r = 1, θ = π/2,φ = 0). If we compare this to the momentum vector $p2 = (1, 0, 0) at location
(r = 1, θ = π/2,φ = π/2), then we see that these two vectors, although they have precisely
the same components in polar coordinates, they point in different directions. This is because
the vector basis in which the vector components are formulated in the polar coordinates is a
local vector basis: the first component always points away from the center, the second away
from the pole and the third in the azimuthal direction. These directions are different at different
positions. Since physical objects, like fluid/gas packages, do not have knowledge of the polar
coordinate system and its peculiarities, their momentum vectors behave “naturally” when they
are expressed in a global vector basis. If they are cast into a local basis that has a different
orientation at different positions, then they behave strangely in such a basis. Therefore, in polar
coordinates the conservation laws of vector quantities such as the momentum of a fluid parcel
yields extra terms in the equations. They look as if an additional force is present, and therefore
these terms are also called “pseudo forces”. They have the property that they only change the
direction of the momentum vector as expressed in the local basis of the non-cartesian coordinate
system. The absolute value of the momentum vector (and thereby of the velocity vector) is not
changed. This is logical, because pseudo forces are not real forces and can therefore not truly
accelerate or decellerate a fluid parcel. However, in Section 10.1.5 we will see that if one uses
a rotating polar coordinate system, then it may seem as if a true acceleration/decelleration is
taking place, but again, this turn out to be not a real effect.

It is not trivial to derive the extra terms that arise for the momentum equations. The most
robust and reliable way of doing this is to use Riemannian Geometry, and this method also
allows one to derive the equations of viscous hydrodynamics (the Navier-Stokes equation), which
spawns even more complex additional terms when cast in polar coordinates. We will not go
into this mess here, and instead we will simply quote the resulting Euler equations in polar
coordinates.

The radial momentum equation becomes:

∂ρu

∂t
+

1

r2

∂(r2ρu2)

∂r
+

∂P

∂r
+

1

r sin θ

∂(sin θρuv)

∂θ
+

1
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∂(ρuw)

∂φ

−
ρ(v2 + w2)

r
= 0

(10.12)

In discrete form for the Riemann solver:

∂(ρuV )

∂t
+ ∆r(FrrSr) + ∆θ(FrθSθ) + ∆φ(FrφSφ)

=

[

2P

r
+

ρ(v2 + w2)

r

]

V
(10.13)

where V is the volume of the cell, Sr, Sθ and Sφ the surfaces of the cell, and Frr = ρu2 + P ,
Frθ = ρuv and Frφ = ρuw the momentum fluxes for this equation. These momentum fluxes
(together with the density and energy fluxes) are the ones that we obtain from the Riemann solver
of our choice at the interfaces.
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The θ momentum equation becomes:
∂ρv
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(10.14)

In discrete form for the Riemann solver:
∂(ρvV )
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(10.15)

where Fθr = ρvu, Fθθ = ρv2 + P and Fθφ = ρvw are the momentum fluxes for this equation.
The φ momentum equation becomes:
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(10.16)

In discrete form for the Riemann solver:
∂(ρwV )

∂t
+ ∆r(FφrSr) + ∆θ(FφθSθ) + ∆φ(FφφSφ)

= −
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uw
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(10.17)

where Fφr = ρwu, Fφθ = ρwv and Fφφ = ρw2 + P are the momentum fluxes for this equation.
The recipe for applying a Riemann solver to polar coordinates is then:

• At the start of the run we pre-compute the cell volumes and cell surfaces, as well as the
necessary cosine and sine values. This saves much CPU time, in particular since cosine and
sine functions are heavy in terms of CPU time required.

• We perform directional operator splitting (Strang splitting). For each direction we do 1-D
independent problems and copy their results back into the 3-D grid.

• For each 1-D problem we compute the left- and right- interface states in precisely the same
way as the chapter on Riemann solvers. These left and right states are now used to com-
pute the Riemann interface fluxes. Note that the Roe or HLLC subroutine used here does
not know about any geometric issues. It simply produces a flux as if it were a Cartesian
Riemann solver.

• These Riemann fluxes are now inserted in the r, θ or φ splitted part of Eqs.(??). By virtue
of operator splitting the other terms in these equations are put to zero.

• The source terms in these equations can be added at the very end of the time step, as another
operator splitting step. But sometimes it can be useful instead to add one of them at the end
of one directional splitting step, while the other at the end of another directional splitting
step. This is something the designer of the algorithm can choose freely. Various choices
have various special advantages and disadvantages. It depends on the problem at hand
which strategy is the best.
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10.1.3 A note of caution for computing the geometric source terms
Let us briefly return to the discrete radial momentum equation Eq.(10.13). The term 2P/r ap-
peared because we had to convert the ∂P/∂r into a (1/r2)∂(Pr2)/∂r in order to incorporate
it into the momentum flux difference. It matters, however, how one computes this term. If
done without care, one could easily get a situation in which the case P (r, θ,φ) =constant and
u, v, w = 0 is not recognized by the solver as a static solution. One can, however, replace:

2P

r
V → P∆rSr ≡ (S(r),i+1/2,j,k − S(r),i−1/2,j,k)Pi,j,k (10.18)

If one now computes this geometric pressure source term in this way, then for the case of
P (r, θ,φ) =constant and u, v, w = 0 the solution is kept unaltered, as it should be, down to
machine precision. In other words, the code now “recognizes” the P (r, θ,φ) =constant solution.
The reason why this is the case is because the term 2P/r arises because of the differences in the
surface areas of the cell interfaces at i − 1/2 and i + 1/2 which are used in the∆r(FrrSr) term.
So by compensating this with exactly the same but opposite we get an exact cancellation, and
thereby a constant pressure will be recognized as such.

The same trick can be applied to the geometric pressure source term of the θ-momentum
equation:

cos θ

sin θ

P

r
V → P∆θSθ ≡ (S(θ),i,j+1/2,k − S(θ),j−1/2,k)Pi,j,k (10.19)

For the φ-momentum equation no such geometric pressure term arises.

10.1.4 Replacing φ-momentum with angular momentum
If one models rotating systems such as accretion disks or rotating stars it can prove to be advan-
tageous in terms of accuracy and reliability to not advect the φ-momentum but the φ-angular
momentum instead (see e.g. Kley 1998, A&A 338, L37).

Let us define l = w sin θr. We only replace w by l in the advection in r and in θ direction.
The physical form of the φ-momentum equation is then:

∂ρl

∂t
+

∂(ρul)

∂r
+

1

r

∂(ρvl)

∂θ
+

∂(ρw2 + P )

∂φ

+ 2 sin θρuw + cos θρvw = 0

(10.20)

which can be written as:

∂ρl

∂t
+

1

r2

∂(r2ρul)

∂r
+

1

r sin θ

∂(sin θρvl)

∂θ
+

∂(ρw2 + P )

∂φ
= 0 (10.21)

The discrete form for the Riemann solver is:
∂(ρlV )

∂t
+ ∆r(r sin θFφrSr) + ∆θ(r sin θFφθSθ) + ∆φ(r sin θFφφSφ) = 0 (10.22)

One sees that the source terms on the right-hand side are completely gone. This is good, because
source terms are always a menace and if they can be avoided, then that is a positive thing.

For convenience we can now define the fluxes for the φ angular momentum:

F̃φr = r sin θFφr = ρul (10.23)
F̃φr = r sin θFφθ = ρvl (10.24)
F̃φr = r sin θFφφ = ρwl + Pr sin θ (10.25)
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so then we obtain:
∂(ρlV )

∂t
+ ∆r(F̃φrSr) + ∆θ(F̃φθSθ) + ∆φ(F̃φφSφ) = 0 (10.26)

This means that all we have to do is to construct the normal fluxes F from the Riemann solver,
and convert them into F̃ for the angular momentum equation (the other equations remain un-
touched), and difference them.

10.1.5 Rotating polar coordinate system
For many purposes it may be desirable to let the coordinate system rotate with a certain rate. For
instance, if we model the flow of air in the Earth’s atmosphere, we want to use a polar coordinate
system that rotates with the Earth’s rotation rate, so that we can anchor the coordinate system to
the surface of the Earth. Another example is the study of accretion disks around young stars and
black holes. This will, however, lead to yet again more “pseudo forces”: the Coriolis force and
the centrifugal force. In fact, they are precisely the same as the pseudo forces we have found in
the static spherical coordinates for moving gas. This time, however, they also appear if the gas
is not moving with respect to the rotating coordinate system, because having zero velocity in the
rotating frame means having non-zero velocity in the lab frame.

We can derive the equations from the above equations. We replace:

∂t → ∂̄t − Ω0∂φ (10.27)
w → w̄ + Ω0r sin θ (10.28)

where Ω0 is the rotation rate of the polar coordinate system around the polar axis and w̄ is the
φ-velocity in the rotating frame. We keep, however, the angular momentum variable l still in the
lab frame, because only in the lab frame this quantity makes physical sense.

One can show that this coordinate transformation does not affect the continuity equation.
The energy conservation equation is also not affected, as long as one still expresses the kinetic
energy in the non-rotating lab frame: (u2 + v2 + w2)/2 and not (u2 + v2 + w̄2)/2. The reason is
that energy only has physical meaning in a non-rotating frame. Only the momentum equations
are affected.

So let us look at the r-momentum equation. Because one replaces the time derivative with
∂̄t − Ω0∂φ, one gains an extra term −Ω0∂φ(ρuV ). But one also replaces w with w̄ + Ω0r sin θ
in the term with the ∆φ, which gives another extra term Ω0r sin θ∆φ(ρuSφ). By writing the first
extra term into a discrete form, one sees that the two extra terms cancel. One can also replace
the V w2/r geometric source term with V (w̄ + Ω0r sin θ)2/r. This gives two extra terms:

V w2/r = V (w̄ + Ω0r sin θ)2/r = V (w̄2 + 2w̄Ω0r sin θ + (Ω0r sin θ)2) (10.29)

These are the centrigufal force terms. However, there is no reason why one could not keep the
equation hybrid in w and w̄, as long as the original w only appears outside of the derivatives or
differences. If we use that strategy, then our radial momentum equation in the rotating frame
becomes:

∂̄t(ρuV ) + ∆r(FrrSr) + ∆θ(FrθSθ) + ∆φ(F̄rφSφ) =

[

2P

r
+

ρ(v2 + w2)

r

]

V (10.30)

where we have left the original w in the source term (right hand side) and replaced Frφ with
F̄rφ = Frφ − Ω0r sin θρu = ρuw − Ω0r sin θρu = ρuw̄, or in other words, F̄rφ is the Frφ
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Riemann flux as measured in the local moving reference frame (i.e. as seen by an observer
moving with velocity Ω0r sin θ. So it follows that the structure of the equation does not change.
Just the left-hand-side now refers to fluxes in the moving fame, while the source terms on the
right-hand-side still refer to the lab-frame w. One could also write out w2 in terms of w̄ as in
Eq. (10.29).

Using the same philosophy we can derive the θ-momentum equation for the case of a rotat-
ing coordinate system:

∂̄t(ρvV ) + ∆r(FθrSr) + ∆θ(FθθSθ) + ∆φ(F̄θφSφ) = −
[

ρ
vu

r
−

cos θ

sin θ

ρw2 + P

r

]

V (10.31)

where F̄θφ = Fθφ−Ω0r sin θρv = ρvw−Ω0r sin θρv = ρvw̄ is the Riemann flux in the comoving
frame.

Finally, for the angular momentum equation we get:

∂̄t(ρlV ) + ∆r(F̃φrSr) + ∆θ(F̃φθSθ) + ∆φ(
¯̃FφφSφ) = 0 (10.32)

where ¯̃Fφφ = F̃φφ − Ω0r sin θρl = ρlw + Pr sin θ − Ω0r sin θρl = ρlw̄ + Pr sin θ. In contrast
to F̄rφ and F̄θφ, the ¯̃Fφφ is not just a multiplication of the comoving flux. Once we obtain the
comoving Riemann flux F̄φφ = ρw̄2 + P from the Riemann solver, here is how to obtain ¯̃Fφφ:

¯̃Fφφ = r sin θ(F̃φφ + ρw̄r sin θ) (10.33)

So we obtain the comoving Riemann flux F̃φφ, modify it with the above equation to obtain ¯̃Fφφ

and insert this into the difference equation.

10.1.6 The FARGO-trick for modeling nearly Keplerian disks
Using a rotating polar coordinate system is very useful for instance for the study of an accretion
disk around a star. There is, however, a slight problem. An accretion disk has a rotation velocity
according to Kepler’s law ΩK(r) =

√

GM/r3, meaning it is differentially rotating. There is
no single global Ω0 that describes the main rotation of the fluid so that one can concentrate on
perturbations on this disk. Instead, if one fixes the rotation rate of the grid Ω0 to the Kepler
frequency ΩK(r0) at radius r0, then the accretion disk will have a comoving frame φ-velocity
w̄ that is about zero at r0, but it will be strongly negative for r ( r0 and strongly positive for
r # r0. Since the highest characteristic velocities are the ones that limit the global time step,
one may be forced to take very small time steps if the outer radius of the grid is much larger
than r0 or the inner radius much smaller than r0. This may put a severe limitation on the spatial
dynamic range.

The FARGO code of Frederic Masset solves this problem in an elegant way. The trick is to
make a scheme that, for this special case, can advect over more than 1 cell per time step. This may
sound peculiar, because if it were so easy, why did we do all the effort to design the advection
algorithms in the previous chapters? The reason we had to do it there was that for normal
hydrodynamics various characteristics move with different speeds and the same characteristics
move with different speeds at different locations. Therefore it was not possible to find a single
time step by which one could simply remap the quantity qi to qi+3 for example.

Here we can partly use this remapping technique, while doing the rest using the normal
advection schemes. Suppose that within a single time step the gas should move over a distance
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of 3.423 φ-grid cells in φ-direction. We can now perform the remapping trick: we first remap all
quantities over precisely 3 grid points. What is left is an advection over 0.423 grid points, which
is then done using our favorite advection scheme or a Riemann solver. The distance in number
of grid cells to move in the remapping step will depend on radius r. The larger abs(r − r0),
the larger the remapping step. The number of steps to take equals the distance of advection of
the gas in the present time step, rounded to the nearest integer value. The CFL time step is now
determined by requiring that, after the remapping step, none of the characteristics moves farther
than 1 cell size in either direction.

10.2 Adaptive Mesh Refinement
Using different coordinate systems to fit best to the problem at hand is a useful technique for
problems with a reasonably simple geometry. However, once the geometry becomes more com-
plex, such as the geometry of a Giant Molecular Cloud with multiple dense cores, then polar
coordinates do not help. In fact, they only make it more complex. One is then best advised to use
3-D Cartesian coordinates again. The problem is that these coordinates are not adapted to the
problem at hand. The dense clumps may require a much finer mesh than the rest of the problem.
Taking a fine mesh throughout the volume may be too computationally demanding.

One way to solve this problem is to use the technique of mesh refinement. This works by
replacing a part of the course grid by a finer grid, possibly even recursively. One thus gets a
patch-work hierarchical grid: Coarser grids higher up the hierarchy and finer grids down in the
hierarchy. If these patches obey certain rules, for instance that each patch of refinement must
either be fully inside a patch of lower resolution or fully outside, then the data management of
these patches can be kept reasonably in check. A hierarchical grid is then built up as a tree. The
base grid stands at the stem of the tree, and each patch of finer resolution mesh is a branch, which
can then branch off itself into even finer patches.

There are several libraries that take care of such hierarchical grid refinement. For instance
the CHOMBO library (written mostly in C++ but with some F77 parts in it) allows a very large
freedom to choose the size and position of the patches. Another library, PARAMESH, is written
in F90/F95 and has a somewhat more rigid structuring of the patches, with the advantage of
efficiency. Here the highest level of refinement is a patch of Nx × Ny × Nz grid cells. One can
combine these into a larger block of 2 × 2 × 2 of these grid patches, and this continues all the
way up to the main (lowest resolution) grid.

We will not go into detail on the precise structure of such AMR libraries in this text. We
will just briefly discuss how these things work.

In Fig.10.1 one can see how the two above described AMR techniques work geometrically.

To construct such grids requires rather complex data management. In a hierarchical struc-
ture, where levels of gridding are strictly based on sub-division of higher-level grids the data
structure is typically a tree-like structure. And typically each level of refinement is an integer
multiple of lower resolution grids, such that a cell at higher resolution will at most have one
neighbor of equal or lower refinement level at each of its cell walls.

Communication between cells in an AMR tree is complex. The easiest way to do this is
to pad each grid block with ghost cells (1 row for first order schemes, 2 rows for second order
schemes etc). At the beginning of each time step one can then fill the ghost cells and all the
complexity of the AMR data management is done in this ghost-cell filling. Once this is done,
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Figure 10.1. Illustration of AMR gridding. Left: A hierarchical cell-division type of AMR
(e.g. Paramesh library). Right: AMR based on patches (e.g. Chombo library).

each block of cells can then be handled independently for one time step. This works very well
(and is implemented in PARAMESH), but if the highest-refinement level consists of blocks of
1x1x1, then there is a huge overhead of ghost cellss: for a second order scheme in 2-D each cell
is then padded with 24 ghost cells (and in 3-D it’s even worse: 124). The easiest way out is
so make the highest-refinement levels to consist of NxN cells, so that the ghost-cell overhead
compared to the true cells is not so large anymore. If one wants to save memory and overhead,
then a direct management of communication between true cells is desirable. This is, however,
rather challenging from a programming perspective.

In any case, it is strongly advised to use existing libraries for the data-management of AMR,
instead of writing such libraries oneself, because of the complexity of the matter.

10.3 Unstructured grids, or partly structured grids
For many purposes the boundary conditions of the problem at hand are very complex. For
instance: flow in a complex pipe structure, or in a reactor of a factory, or the flow of gas over a
car or airplane etc. For such problems it is important to allow very flexible gridding. There are
many ways of doing this. The most flexible is the gridding using triangles in 2-D or tetraeders
in 3-D (Fig. 10.2-left). The creation of good grids using this triangulation is non-trivial, and this
is an entire field of engineering by itself. One of the main disadvantages of such completely
flexible gridding is that it has difficulty making use of the highly parallel computer architectures
now available, in particular architectures with extremely parallel graphics card accelerators. Such
accelerators need simply structured grids to acquire substantial speeds-ups. For this reason the
complex geometries of the grid are sometimes generated out of patches of regular but curved)
coordinate systems patched together at their interfaces (see Fig. 10.2-right).

We will not go into details here.
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Figure 10.2. Illustration of unstructured gridding. Left: with triangles (or in 3-D: tetraeders).
Right: with piecewise structured curved patches.


