
Chapter 5

Classic hydrodynamics solvers

5.1 Basic approach
Armed with the knowledge on how to numerically advect functions over a grid, we can now
start to build our first numerical hydrodynamics solvers. The knowledge of the structure of
hyperbolic equations described in chapter 2 would lead us to want to diagonalize the system
of equations locally and then apply the numerical advection schemes. This is in fact precisely
what approximate Riemann solvers do (see Chapter ??). But historically the equations were
approached in a somewhat different manner, and those methods also have some advantages over
the Riemann solvers of later chapters and for that reason are still heavily in use today. The main
term in the Euler equations that tends to mix the eigenvectors of the Jacobian (and thus makes the
problem not globally diagonalizable) is the∇P term. If we extract this term from the left-hand-
side of the momentum equation and put it to the right-hand-side, then the equation becomes an
advection equation of momentum with advection velocity u. A similar trick can be done with
the energy equation. The result is:

∂tρ + ∇ · (ρ#u) = 0 (5.1)
∂t(ρ#u) + ∇ · (ρ#u#u) = −∇P (5.2)

∂t(ρetot) + ∇ · (ρetot#u) = −∇ · (P#u) (5.3)

The right-hand-side can be regarded as a source term. If we now regard #u at any time step as
a given quantity of the previous time step, then the left-hand-side of the above set of equations
is already in globally diagonal form with three equal eigenvalues: λ1,2,3 = u for the x-direction
and λ1,2,3 = v for the y-direction and λ1,2,3 = w for the z-direction. The advection now has
to be done in ρ, ρu, ρv, ρw, and ρe, all with the same advection velocity: these are five fully
independent advection problems. This is what is sometimes called consistent transport.

There are a number of advantages of this approach over the full characteristic approach we’ll
cover in Chapter ??. One of the main advantages of this approach is that the advection problem
is much simpler than in the case when we diagonalize the full Jacobian with gas pressure. In fact,
the above approach is very similar to Burger’s equation, but with source terms. The source terms
take care of the pressure forces and adiabatic compression/expansion of the gas. One can now
apply a standard advection routine for the advection of conserved scalar functions (see Chapters
3 and 4) to all hydrodynamic conserved quantities ρ, ρu and ρetot, and at the end of each time
step add the source terms to the momentum- and energy equation.

Apart from the fact that this is easy to do, another advantage of this is that one can apply
algorithms of arbitrary high order. Of course, this high-order advection only applies to fluid mo-

73

74

tion and not to the sound waves, so the high-precision advection does not make the propagation
of sound waves more accurate in this approach. But for very sub-sonic flows the propagation
of sound waves is anyway of lesser interest, and the fluid motions are then anyway the most
important flow patterns, which can thus be advected with any precision one likes by choosing
the right advection algorithm. If the gradient of the pressure (i.e. the source term on the rhs of
the momentum and energy equations) is also evaluated with a higher-order accurate derivative,
then the entire algorithm can be made higher order.

A final advantage of this approach is that hydrostatic solutions of fluid flows with external
body forces can be easily ‘recognized’ by the algorithm. This is because all forces are handled
as source terms on the right-hand-side of the equations. In equilibrium all these forces cancel
exactly, and will not produce numerical disturbances to the advection part of the equation. This
approach is very well suited for problems that are near some hydrostatic equilibrium, such as
planetary atmospheres or fluid motions in a rotating system.

5.2 A simple 1-D hydrodynamics algorithm
Let us jump right into making an algorithm, but let us do this for the moment for a simplified
case: the problem of 1-D isothermal hydrodynamics. The two conserved quantities to advect are
q1 = ρ and q2 = ρu. The pressure is P = ρc2

s where c2
s is a global constant. The equations to

solve are:

∂tq1 + ∂x(q1u) = 0 (5.4)
∂tq2 + ∂x(q2u) = −∂xP (5.5)

5.2.1 The algorithm
We will approach this using operator splitting:

1. First we do the advection without source term,

qn+1/2
1 = qn

1 − ∆t∂x(q
n
1 u) (5.6)

qn+1/2
2 = qn

2 − ∆t∂x(q
n
2 u) (5.7)

2. Then we will add the source term:

qn+1
1 = qn+1/2

1 (5.8)
qn+1
2 = qn+1/2

2 − ∂xP
n+1/2 (5.9)

where P n+1/2 = qn+1/2
1 c2

s.

For the advection, let us for the moment simply choose the donor-cell algorithm. The q1 and q2

are located at the grid cell centers, so that we have q1,i and q2,i with 0 ≤ i ≤ N − 1. To produce
an advective flux at the cell interfaces, we need to calculate first the cell interface value of the
velocity. We do this simply by averaging the velocity over the two adjacent cells:

ui+1/2 =
1

2

(

q2,i

q1,i
+

q2,i+1

q1,i+1

)

(5.10)

75

Then we define the flux:

f1,i+1/2 =

{

qn
1,iui+1/2 for ui+1/2 > 0

qn
1,i+1ui+1/2 for ui+1/2 < 0

(5.11)

and the same for f2,i+1/2. We update q as

qn+1/2
1,i = qn

1,i − ∆t
f1,i+1/2 − f1,i−1/2

xi+1/2 − xi−1/2
(5.12)

and the same for qn+1/2
2,i . This is the donor-cell advection. The qn+1/2 does not mean that we do

the advection for only half a time step. It only means that, by operator splitting, we still have
another operator to go.

For this second operator, the addition of the source, we simply take the approximation:

∂P

∂x

∣

∣

∣

∣

i

→
P n+1/2

i+1 − P n+1/2
i−1

xi+1 − xi−1
= c2

s

ρn+1/2
i+1 − ρn+1/2

i−1

xi+1 − xi−1
(5.13)

and we perform the following update, this time only for q2,i

qn+1
2,i = qn+1/2

2,i − c2
s

ρn+1/2
i+1 − ρn+1/2

i−1

xi+1 − xi−1
(5.14)

In principle this is it, but we must take special care at the boundary. We must decide which
kind of boundary condition to take. In Section 5.3 we shall go into more detail, but for now let
us assume a reflective boundary condition in which the advective velocities at the left interface
of the left boundary cell and the right interface of the right boundary cell are assumed to be
zero, and in which the pressure outside of the domain is assumed to be equal to the pressure
in the boundary cell. If i = 0 is the first cell, and i = N − 1 is the last cell, then we write
u−1/2 = uN−1/2 = 0 for the advection. For the pressure source term in the momentum equation
we take (only the left boundary condition as an example; right goes similar):

qn+1
2,0 = qn+1/2

2,0 −
1

2
c2
s

ρn+1/2
1 − ρn+1/2

0

x1 − x0
(5.15)

The factor 1/2 comes in because actually the∆x = x1 − x−1, but since without ghost cells x−1

does not exist, we do it with a factor 1/2. Note, then, that ghost cells may indeed be handy. We
will use them later.

5.2.2 The computer implementation
For the computer implementation we must first identify the indices of the interfaces, because a
computer cannot address i + 1/2 in an array. As usual we always take the interface to be left
of the cell with the same number: ui−1/2 ≡ u[i]. We make an array of N values for q1 ≡ ρ
and q2 ≡ ρu, and any interface quantities will be arrays of N + 1 values, starting with the left
interface of the leftmost cell and ending with the right interface of the rightmost cell.

Now let us create a subroutine for doing one single time step of the hydrodynamics:

pro hydroiso_cen,x,xi,rho,rhou,e,gamma,dt
nx = n_elements(x)

76

;
; Compute the velocity at the cell interfaces
;
ui = dblarr(nx+1)
for ix=1,nx-1 do begin

ui[ix] = 0.5 * (rhou[ix]/rho[ix] + rhou[ix-1]/rho[ix-1])
endfor
;
; Compute the flux for rho
;
fluxrho = dblarr(nx+1)
for ix=1,nx-1 do begin

if ui[ix] gt 0. then begin
fluxrho[ix] = rho[ix-1] * ui[ix]

endif else begin
fluxrho[ix] = rho[ix] * ui[ix]

endelse
end
;
; Update the density
;
for ix=0,nx-1 do begin

rho[ix] = rho[ix] - (dt/(xi[ix+1]-xi[ix]))*$
(fluxrho[ix+1]-fluxrho[ix])

endfor
;
; Compute the flux for rho u
;
fluxrhou = dblarr(nx+1)
for ix=1,nx-1 do begin

if ui[ix] gt 0. then begin
fluxrhou[ix] = rhou[ix-1]ˆ2 / rho[ix-1]

endif else begin
fluxrhou[ix] = rhou[ix]ˆ2 / rho[ix]

endelse
end
;
; Update the momentum
;
for ix=0,nx-1 do begin

rhou[ix] = rhou[ix] - (dt/(xi[ix+1]-xi[ix]))*$
(fluxrhou[ix+1]-fluxrhou[ix])

endfor
;
; Compute the pressure
;
p = (gamma-1.d0)*rho*e

77

;
; Now add the pressure force, for all cells
; except the ones near the boundary
;
for ix=1,nx-2 do begin

rhou[ix] = rhou[ix] - dt*(p[ix+1]-p[ix-1])/(x[ix+1]-x[ix-1])
endfor
;
; Now do the boundary cells, assuming mirror
; symmetry in the boundaries
;
rhou[0] = rhou[0] - 0.5*dt*(p[1]-p[0])/(x[1]-x[0])
rhou[nx-1] = rhou[nx-1] - 0.5*dt*(p[nx-1]-p[nx-2])/(x[nx-1]-x[nx-2])
;
; Done
;
end

This contains everything we discussed above: the advection, the computation of the new pres-
sure, the implementation of the boundary conditions.

Now let us define a test problem.

nx = 100
nt = 1000
x0 = 0.d0
x1 = 100.d0
xmid = 0.5 * (x0+x1)
dt = 0.25
cfl = 0.5
x = x0 + (x1-x0)*(dindgen(nx)/(nx-1.d0))
gamma = 7./5.
rho = dblarr(nx,nt+1)
rhou = dblarr(nx,nt+1)
e = dblarr(nx)+1.d0
time = dblarr(nt+1)
dg = 0.1*(x1-x0)
rho[*,0] = 1.d0+0.3*exp(-(x-xmid)ˆ2/dgˆ2)

And produce the xi array which is needed, as well as a dx array.

;
; Now some additional arrays are set up
;
xi = dblarr(nx+1)
xi[1:nx-1] = 0.5 * (x[1:nx-1] + x[0:nx-2])
xi[0] = 2*xi[1] - xi[2]
xi[nx] = 2*xi[nx-1] - xi[nx-2]
dx = (xi[1:nx] - xi[0:nx-1])

78

Figure 5.1. The density as a function of space x and time t with initial condition of a gaussian
perturbation, solved with the simple first-order hydrodynamics algorithm of Section 5.2.

We now want to compute 1000 time steps of the hydrodynamics. We must recompute the
smallest allowed∆t each time step. We define a dimensionlessCourant number which tells how
much smaller than the formal maximum we wish to take the time step. And here we go:

;
; Now the hydro is done
;
for it=1,nt do begin

qrho = rho[*,it-1]
qrhou = rhou[*,it-1]
cs = sqrt(gamma*(gamma-1)*e)
dum = dx/(cs+abs(qrhou/qrho))
dt = cfl*min(dum)
time[it] = time[it-1]+dt
;;
print,’Time step ’,it,’, Time = ’,time[it],’, Dt = ’,dt
;;
hydroiso_cen,x,xi,qrho,qrhou,e,gamma,dt
;;
rho[*,it] = qrho
rhou[*,it] = qrhou

endfor

The results are shown in Fig. 5.1. It is seen that the Gaussian blob in the density splits up in a
left- and a right-moving blob, which both reflect off the walls of the domain and return toward
the center of the domain. By that time, due to the non-linearity of the equations and the strength
of the pertubation (30% of the background value), the wave has steepened into something that
looks like a shock, but is still spread over multiple cells. This wave pattern repeats many times
and the shock front steepens, but still remains smeared over a number of cells. Nevertheless, it
seems that we have produced our first succesful hydrodynamics code.

79

Figure 5.2. Same as Fig. 5.1, but now using always the start-of-the-time-step variables for the
update of the state. A numerical instability appears.

5.2.3 The order of evaluation matters...
The above exercise may have not seemed too difficult. But still we only have a first order algo-
rithm and of course we have been lucky that we have not fallen into the many pitfalls that can
exist. One possible problem appears if the order of the evaluations is done in a different way.
Suppose that the evaluation of the pressure is done before the advection of the density. In effect
we then get

qn+1
2,i = qn+1/2

2,i − c2
s

ρn
i+1 − ρn

i−1

xi+1 − xi−1
(5.16)

instead of Eq. 5.14. This is only a very minor change in the algorithm. It simply means that
we use the values at the start of the time step for any of the operations we do (advection, source
addition). It may not seem as a mistake, but Fig. 5.2 shows the result. In the beginning the wave
propagates in the way that was expected, but soon a serious instability appears and wrecks the
entire solution. This shows that when sources like the pressure source are added, a true operator
splitting is required: first the advection, then recompute the pressure from the new variables, and
then add the pressure source.

5.3 Boundary conditions, ghost cells
We have seen already in chapter 4 that the use of ghost cells at the boundaries can be very useful
to easily implement boundary conditions. There are a number of different kinds of boundary
conditions one can install in this way. Here is a list of common ones (where we mainly focus on
the left boundary).

1. Periodic boundary conditions: ρ[0] = ρ[Nx], u[0] = u[Nx] (and similarly ρ[Nx+1] = ρ[1],
u[Nx + 1] = u[1]).

2. Reflective boundary conditions: ρ[0] = ρ[1], u[0] = −u[1].

3. Free outflow/inflow: ρ[0] = ρ[1], u[0] = u[1].

4. Free outflow, no inflow: ρ[0] = ρ[1], u[0] = −abs(u[1]).

80

5. Given-state boundary condition: ρ[0] = ρl(t), u[0] = ul(t).

and similar for the right boundary. In 2-D and 3-D hydrodynamics these types of boundary
conditions are the same, but then including also the other two velocity components.

Periodic boundary conditions have many uses. First of all, sometimes the system we wish
to model is clearly periodic (such as if we wish to model the atmosphere of the Earth where
going East eventually brings you back where you came from). But also for other applications
can periodic boundary conditions be useful: if we wish, for instance, to model the nature of
turbulence, then we are anyway interested in flow patterns with scales that are much smaller
than the computational domain. But we do wish to ensure that there are no artificial damping
or forcing effects caused by imposing some arbitrary boundary condition. A periodic boundary
condition basically removes beforehand any artificial boundary effects because the turbulence
can now not feel the boundary at all. The only way that the turbulence can ’feel’ the fact that
the computational domain is limited is that it cannot grow modes larger than the size of the
computational domain.

Reflective boundary conditions are also very often used. The advantage is that no mass
nor energy can flow off the grid. Energy and mass are therefore globally conserved, or in other
words: the system is closed. There are no external influences that may affect the solution because
the problem is perfectly self-contained. A disadvantage of reflective boundary conditions is that
any waves that are spawned by the interesting part of the flow pattern that we are modeling are
also perfectly reflected, and typically return to the area of interest and start interfering with that
area. For instance, if we want to model how a rotating irregular body in a volume of gas stirrs
waves and how these waves transport away energy and damp the rotation of the body, then the
reflective boundary conditions bring back the waves to the body and start affecting its motion.
This is then clearly undesired.

A free outflow/inflow boundary condition has the advantage that any waves that are pro-
duced in the model are simply advected off the grid. The waves do not return anymore. This
is clearly desirable in many cases. But the problem is that if for some reason the velocity u[1]
becomes inflowing (u[1] > 0), then the state at cell i will determine the influx of matter. This
can typically cause completely arbitrary influx of matter. One can see why this is the case: one
of the two characteristics is pointing inward into the grid (λ+ = u + cs). So there is always in
inflow of information into the grid. But if the state in the ghost cell is purely given as a function
of the state at i = 1, then the state at i = 1 determines itself what kind of information it wishes
to receive from grid point i = 0 (ghost cell) through that characteristic. Clearly this is unphysi-
cal because the inward-pointing characteristic (λ+ = u + cs) should transport information only
toward positive x and never receive any information from larger x. This boundary condition is
therefore quite dangerous. Only if we have a supersonic outflowing motion toward this bound-
ary can we be sure that this boundary condition will never cause problems. The reason is that in
the case of supersonic outflow both characteristics point out of the grid: λ− = u − cs < 0 and
λ+ = u + cs < 0. Then by copying the state to the ghost cell no information is propagated in the
upstream direction.

The outflow-but-no-inflow condition is an attempt to solve the problem of arbitrary inflow
in subsonic cases. It clearly does not allow unphysical inflow of matter, but it allows matter to
flow off the grid. It is, so to speak, a sink. It is not ideal, because there is still the problem of
propagating information upstream, but if the goal of imposing this boundary condition is to get
rid of any matter than comes near the boundary, then this is sometimes used.

81

With the given-state boundary condition one can do many things. For instance, one can
force waves, or impose some influx of matter at the boundary. However, with this method this
does not always work. Suppose we impose an influx of f = ρ[0] ∗ u[0] = 1 at the boundary
by putting ρ[0] = 1, u[0] = 1, but the state in the modeling domain is ρ[1] = 1000, u[1] = 1.
We may think that we imposed f = 1 at the boundary, but instead the pressure in cell 1 is
completely overwhelming the pressure in ghost cell 0, and a negative flux of matter will result.
So the imposed-state boundary condition works only if the influx has a momentum flux that
clearly overcomes the pressure in the modeling domain. We could, instead, decide to impose a
flux at boundary i = 1/2, i.e. the left wall of the boundary cell, and completely skip the ghost
cell approach. That would allow a perfect and strict imposition of a flux. A disadvantage here is
that one does not know if this flux is physical in this situation.

5.3.1 Ghost cells for schemes with a 5-point stencil
A single ghost cell on each boundary is sufficient if the stencil of the advection scheme is sym-
metric and 3-point. For linear advection schemes such as Donor-cell and Lax-Wendroff this is
the case. However, some other schemes such as Beam-warming or Fromm require, for the update
at point i also information of the cells at i± 2 in addition to the i± 1 points. Also, when the flux
limiter method is used with a non-linear flux limiter recipe, then often the i ± 2 are used. Such
schemes are therefore in principle 5-point schemes, even if, for a given velocity direction, only 3
points are used (i− 2, i− 1, i or i, i + 1, i + 2) because we do not know a-priori which direction
the velocity points. For such schemes a single ghost cell on each boundary is not sufficient. We
must implement a double layer of ghost cells. For the direct flux from these cells into the physical
domain the first ghost cell (the one next to the physical domain) is of most importance, because
that is the donor of the flux. But the second ghost cell will, in the case of flux-limiters, determine
what the value of the flux limiter is, and can thereby significantly affect the solution nonetheless.
The implementation of the boundary condition goes, for the rest, similar to the single-ghost cell
case.

5.4 Hydrodynamics with ghost cells
So now that we see that ghost cells are extremely useful to implement boundary conditions,
let us start all over again and produce a new algorithm in which two ghost cells are used on
each side. Also, let us implement a standardized advection subroutine which we shall call
advect(), which advects any conserved quantity with a given velocity given at the cell in-
terfaces, and a standardized boundary condition routine boundary() that setst he ghost cells
to the proper values consistent with the kind of boundary condition used. Let us first show
the routine advect(), but note that a more sophisticated version of advect() (with more
choices of flux limiters) will be made available for the exercises:

pro advect,x,xi,q,ui,dt,fluxlim,nghost
nx = n_elements(xi)-1
if n_elements(x) ne nx then stop
if n_elements(xi) ne nx+1 then stop
if n_elements(q) ne nx then stop
if n_elements(ui) ne nx+1 then stop
if nghost lt 1 then stop
;

82

; Determine the r_{i-1/2} for the flux limiter
;
r = dblarr(nx+1)
for i=2,nx-2 do begin

dq = (q[i]-q[i-1])
if abs(dq) gt 0.d0 then begin

if(ui[i] ge 0.d0) then begin
r[i] = (q[i-1]-q[i-2])/dq

endif else begin
r[i] = (q[i+1]-q[i])/dq

endelse
endif

endfor
;
; Determine the flux limiter
; (many other flux limiters can be implemented here!)
;
case fluxlim of

’donor-cell’: begin
phi = dblarr(nx+1)

end
’superbee’: begin

phi = dblarr(nx+1)
for i=1,nx-1 do begin

a = min([1.d0,2.d0*r[i]])
b = min([2.d0,r[i]])
phi[i] = max([0.d0,a,b])

endfor
end
else: stop

endcase
;
; Now construct the flux
;
flux = dblarr(nx+1)
for i=1,nx-1 do begin

if ui[i] ge 0.d0 then begin
flux[i] = ui[i] * q[i-1]

endif else begin
flux[i] = ui[i] * q[i]

endelse
flux[i] = flux[i] + 0.5 * abs(ui[i]) * $

(1-abs(ui[i]*dt/(x[i]-x[i-1]))) * $
phi[i] * (q[i]-q[i-1])

endfor
;
; Update the cells, except the ghost cells

83

;
for i=nghost,nx-1-nghost do begin

q[i] = q[i] - dt * (flux[i+1]-flux[i]) / (xi[i+1] - xi[i])
endfor
;
end

Now the boundary condition implementation routine, which is only necessary for imposing pe-
riodic boundary conditions or mirror boundary conditions, is:

pro boundary,rho,rhou,periodic=periodic,mirror=mirror
;
; Get the number of grid points including the ghost cells
;
nx = n_elements(rho)
;
; If periodic, then install periodic BC, using two ghost cells
; on each side (two are required for the non-lin flux limiter)
;
if keyword_set(periodic) then begin

rho[0] = rho[nx-4]
rho[1] = rho[nx-3]
rho[nx-2] = rho[2]
rho[nx-1] = rho[3]
rhou[0] = rhou[nx-4]
rhou[1] = rhou[nx-3]
rhou[nx-2] = rhou[2]
rhou[nx-1] = rhou[3]

endif
;
; If mirror symmetry, then install mirror BC, using two ghost cells
; on each side (two are required for the non-lin flux limiter)
;
if keyword_set(mirror) then begin

rho[0] = rho[3]
rho[1] = rho[2]
rho[nx-2] = rho[nx-3]
rho[nx-1] = rho[nx-4]
rhou[0] = -rhou[3]
rhou[1] = -rhou[2]
rhou[nx-2] = -rhou[nx-3]
rhou[nx-1] = -rhou[nx-4]

endif
end

The actual hydrodynamics subroutine makes use of the above routines. It reads:

pro hydrostep,x,xi,rho,rhou,e,gamma,dt,periodic=periodic,$

84

mirror=mirror,fluxlim=fluxlim,nrvisc=nrvisc
;
; Check for conflicting settings
;
if keyword_set(mirror) and keyword_set(periodic) then stop
;
; Use 2 ghost cells on each side
;
nghost = 2
;
; If not defined, install default flux limiter
;
if not keyword_set(fluxlim) then fluxlim=’donor-cell’
;
; Get the number of grid points including the ghost cells
;
nx = n_elements(x)
;
; Impose boundary conditions
;
boundary,rho,rhou,periodic=periodic,mirror=mirror
;
; Compute the velocity at the cell interfaces
;
ui = dblarr(nx+1)
for ix=1,nx-1 do begin

ui[ix] = 0.5 * (rhou[ix]/rho[ix] + rhou[ix-1]/rho[ix-1])
endfor
;
; Advect rho
;
advect,x,xi,rho,ui,dt,fluxlim,nghost
;
; Advect rho u
;
advect,x,xi,rhou,ui,dt,fluxlim,nghost
;
; Re-impose boundary conditions
;
boundary,rho,rhou,periodic=periodic,mirror=mirror
;
; Compute the pressure
;
p = (gamma-1.d0)*rho*e
;
; Now add the pressure force, for all cells except the ghost cells
;

85

for ix=2,nx-3 do begin
rhou[ix] = rhou[ix] - dt*(p[ix+1]-p[ix-1])/(x[ix+1]-x[ix-1])

endfor
;
; Re-impose boundary conditions a last time (not
; strictly necessary)
;
boundary,rho,rhou,periodic=periodic,mirror=mirror
;
; Done
;
end

This routine makes sure to always re-implement the boundary conditions for the ghost cells. This
is done without checking which variables have to be updated, so it is a bit inefficient, but it is
safe. Note, also, that in the above routines nx denotes the number of cells including the ghost
cells. With the above routines one can again do experiments and see how the solutions behave for
different flux limiters and boundary conditions. One true advantage of the above implementation
is that it is now very easy to impose periodic boundary conditions, because we only copy the
state variables from the left to the right boundary and from the right to the left boundary.
→ Exercise: Implement the above routines and create a setup with a sound wave moving from

left to right. Impose periodic boundary conditions. Tip: Make sure that the sine-wave is
such that rho[0]=rho[nx-4] and rho[1]=rho[nx-3], so that the periodicity of the
wave is perfect, in the presence of the two ghost cells on each side. Describe how the sound
wave steepens, sheds smaller waves and forms a shock.

5.5 Now including the energy equation
So far we have neglected the energy equation because we assumed that the temperature was
constant at all times. However, most interesting applications do not have this property. We
therefore must include the energy equation, including the work source term due to the pressure
force:

∂t(ρetot) + ∂x(ρetotu) = −∂x(Pu) (5.17)
We define a third conserved quantity q3 ≡ ρetot. As in the case of the momentum equation we
apply the method of operator splitting here: we first solve the equation ∂tq3 + ∂x(q3u) = 0 for
one time step, and then solve (with the new variables) the equation ∂tq3 = −∂x(Pu) for the same
time step. The advection of the total energy is done in exactly the same way as for the density
and the momentum. In fact, we can likewise use the subroutine advect() for it.

The difficulty lies in the work term −∂x(Pu). First of all we need to calculate the pressure
P from the three conserved quantities q1 ≡ ρ, q2 ≡ ρu and q3 ≡ ρetot. In fact, we also need this
P for the source term in the momentum equation. The way this can be done is to first compute
the thermal energy eth from the total energy:

u = q2/q1 (5.18)
etot = q3/q1 (5.19)
ekin = u2/2 (5.20)
eth = etot − ekin (5.21)

86

Once we know this, we compute the pressure according to P = (γ − 1)ρeth.
Then we use P for both the source term in the momentum equation (the force) and for the

source term in the energy equation (the work). For the former we write

qn+1
2,i − qn+1/2

2,i

∆t
= −

Pi+1 − Pi−1

2∆x
(5.22)

where qn+1/2
2,i denotes the update of qn

2,i due to the advection. For the latter we can write:

qn+1
3,i − qn+1/2

3,i

∆t
= −

Pi+1ui+1 − Pi−1ui−1

2∆x
(5.23)

These new elements can be readily built in into the algorithm of Section 5.4, and this should
produce a working algorithm.

5.5.1 Are these equations conservative?
As was mentioned in Chapter 4 it can be very important to make sure that conserved quantities
actually remain conserved in the numerical simulation. In the current approach, however, we
have put the pressure force and work to the right-hand-side of the conservation equation, as a
source term. This raises the question: are the equations still conservative? The answer is: in
principle yes, if the force and work terms are written in a proper way. Define the momentum flux
through interface i− 1/2 to be fp,i−1/2 = 1

2(Pi−1 + Pi), and similar for i + 1/2. Then we obtain:

qn+1
2,i = qn+1/2

2,i − ∆t
fp,i+1/2 − fp,i+1/2

xi+1/2 − xi−1/2
= qn+1/2

2,i −
∆t

2

Pi+1 − Pi−1

xi+1/2 − xi−1/2
(5.24)

and similar for the energy equation. For a regular grid this becomes equal to the expressions
of Eqs.(5.22,5.23). This shows that implicitly the equations are numerically conservative, even
though we have not explicitly put them in a flux-conserved form. For non-regular gridding one
should stick to the presently derived expression, so that flux conservation is guaranteed.

5.6 Shock waves and the Von Neumann - Richtmyer artificial viscosity
We have seen in the examples above that waves tend to steepen and form shocks. Let us take
a closer look, by simulating a true right-moving shock wave and analyzing its behavior. Let us
assume that a shock wave is moving from the left boundary into a non-moving medium. We
can define the Mach number M to be the ratio of the shock speed us to the sound speed Cs

on the pre-shock medium. Let us call the pre-shock medium the ’right domain’ and the post-
shock region the ’left domain’, because the shock moves from left to right. We therefore define
M ≡ us/Cs,r. According to the conservation of density, momentum and energy over the shock
(Rankine-Hugoniot) we can write:

ρl = ρr
(γ + 1)M2

(γ − 1)M2 + 2
(5.25)

Pl = Pr
2γM2 − (γ − 1)

γ + 1
(5.26)

us = M

√

γ
Pr

ρr
(5.27)

ul = us
ρl − ρr

ρl
(5.28)

87

Figure 5.3. The result of a test problem with aM = 2 shock wave moving into a non-moving
medium of ρ = 1, P = 0.1, modeled using advection with a superbee flux limiter.

This is then the state that we plug into the ghost cells on the left boundary. It should, in principle,
produce a clean shock front moving from the left boundary to the right. Now let us see what we
get if we use advection according to the superbee flux limiter for a shock of Mach 2. This is
depicted in Fig. 5.3 What one sees is that in principle the shock wave is well reproduced, but
there are some oscillations at the shock front. This has a natural explanation. The equations for
the hydrodynamics solver were derived from the continuous Euler equations. These equations
are valid for smooth flow, but break down for shock fronts, so we should not expect the hydrody-
namics solver to be able to handle shocks. In fact, a shock is the only location where non-viscous
hydrodynamics can increase the entropy of the gas flow. The way that Nature does this is that at
very small spatial scales the molecular viscosity becomes important, and this viscosity produces
entropy in the shock front. Basically one can say that in Nature the shock front has a small but
non-negligible width L such that the Reynolds number Re= uL

ν is of order unity in this shock
front. Kinetic energy can then be dissipated to heat in this shock, which increases the entropy of
the gas.

In numerical hydrodynamics the grid cell size is usually orders of magnitude larger than the
true width of the shock. And the equations that we used for the hydrodynamics solver did not
explicitly include any entropy-generating viscosity terms. Therefore we expect that our algorithm
should produce errors in the flow near the shock front, in particular downstream of the shock
front. The interesting thing is, in fact, that the method already does surprisingly well, given
these thoughts (see, however, Section 5.10.2 for what happens if a different energy equation is
used). Far downstream of the shock front the state is reasonably correct and the entropy increase,
expected from the shock, is indeed there. So one should ask oneself two questions:

1. Why does our solver handle the shock reasonably well, even though we never inserted any
entropy-generating viscous terms by hand?

2. How can we do better, so that we do not get the wiggles behind the shock?

To answer question 1, the answer lies in the fact that due to the intrinsic diffusivity of the
advection algorithm, any oscillations are smeared out quickly. The question remains then, how
does the code know how much entropy to generate? This can be traced back to the fact that
the algorithm is in conservative form. If the post-shock state variables are smoothed out and all

88

Figure 5.4. As Fig. 5.3, but now with von Neumann-Richtmyer artificial viscosity with ξ = 3.

oscillations have gone, then there is only one set of state variables consistent with the post-shock
density, momentum and energy flux. So diffusing oscillations out, but keeping the algorithm
perfectly conservative, must automatically produce the right state and therefore the right increase
in entropy compared to the pre-shock state. Diffusion is therefore a good thing in this respect.
In fact, if we would use the donor-cell algorithm for the advection, which has intrinsically more
numerical diffusion, then the post-shock oscillations are already quite low. But the drawback of
donor-cell algorithm is that any flow feature is smeared out. This can therefore not be the final
solution.

To answer question 2: we need to find a way to increase the diffusivity near the shock
front, but not elsewhere. In fact, we can follow a physically motivated path by introducing
an artificial viscosity (as opposed to artificial diffusivity) which sort of mimics the physical
shock viscosity, but then smeared out over a region the size of a few grid cells instead of the
unresolvable true shock width. The most popular artificial viscosity recipe for handling shocks
is the von Neumann-Richtmyer artificial viscosity. This is a bulk viscosity which acts as an
additional pressure:

Πi =

{

1
4ξ

2(ui+1 − ui−1)2ρi if ui+1 ≤ ui−1

0 if ui+1 > ui−1
(5.29)

where ξ is a tuning parameter which specifies over how many grid cells a shock should be spread
out. It is typically chosen to be of the order of 2 or 3. To implement it in the algorithm one
replaces any instance of the pressure P with P + Π. This takes care of the force as well as the
work done by this bulk viscosity. For the above test problem, the result for ξ = 3.0 is shown
in Fig. 5.4 One sees that the post-shock oscillations have gone. The penalty is that the viscosity
affects the pre-shock region and the shock is therefore not as sharp anymore as we had before.
Also there is a little dip in the density profile where no dip should be. This has formed in the
very initial phase as the shock started to propagate into the domain. Since the shock as modeled
by the numerical algorithm is not infinitely sharp, the intial conditions were not in agreement
with the “numerical form of the shock”, and startup oscillations were present. They produced a
bit too much entropy in this region, causing the density (for the same pressure) to be a bit lower
than should be.

Von Neumann-Richtmyer artificial viscosity has the good property that it only becomes
strong when its presence is required, and becomes negligible when the flow is smooth. It is

89

therefore much better than the uncontrolled numerical diffusivity of for instance the donor-cell
algorithm. The von Neumann-Richtmyer artificial viscosity, and varieties thereof, is used in a
great many numerical hydrodynamics codes.

5.7 Odd-even decoupling
The numerical algorithms we have constructed so far have an interesting problematic property
that is only seldomly serious, but might be useful to keep in mind.

Suppose we start with a situation in which the velocity is everywhere zero: u(x) = 0. We
assume that the specific thermal energy (∝ temperature) is also constant, for simplicity. Let us
take it: eth(x) = 1. But we let the density vary as a ‘sawtooth’ profile:

ρi =

{

1 ifi = 1, 3, 5, 7 · · ·
2 ifi = 2, 4, 6, 8 · · · (5.30)

The pressure in these cells is then Pi = 1 for i = 1, 3, 5, · · · and Pi = 2 for i = 2, 4, 6, · · · . So in
principle the even cells are over-pressurized compared to their neighbors. Physically these cells
should quickly depressurize by moving part of their content to their under-pressurized neighbors.
This should give a high-frequency oscillation, and with the usual numerical viscosity this should
then automatically damp out. However, for this case the momentum flux through cell interfaces
i − 1/2 and i + 1/2 is

F (1)
i−1/2 =

1

2
(Pi−1 + Pi) F (1)

i+1/2 =
1

2
(Pi + Pi+1) (5.31)

The update of the momentum at cell center i is:

ρn+1
i un+1

i

∆t
= −

F (1)
i+1/2 − F (1)

i−1/2

∆x
= −

1

2∆x
(Pi+1 − Pi−1) = 0 (5.32)

So because the Pi cancels out, the update of the momentum is zero. This is also logical, since the
fluxes of momentum in both interfaces are the same, and therefore their differences cancel. This
is a potential problem because the code leaves these oscillations there without damping them out,
i.e. it leaves an unphysical solution. In fact, it is fundamentally impossible to solve this problem
if momentum, density and pressure are located on the same gridpoints, unless artificial diffusion
is invoked. This phenomenon is called odd-even decoupling.

One sees that the odd-even decoupling does not involve an exponetially growing unstable
mode. But there is also no damping. So any numerical noise or other causes of errors may simply
get ‘stuck’ in an odd-even mode where they do not get amplified, but they do not get damped
either. Such ‘sawtooth’ modes are clearly an unwanted effect. One simple way to get rid of them
would be diffusion, but that would also diffuse out flow patterns that we wish to resolve. A better
way, which also automatically increases the order of the algorithm, is to use staggered grids.

5.8 Staggered grids
A numerical hydrodynamics scheme with a staggered grid places any vectorial components,
such as the momentum density q2 ≡ ρu, not on the cell centers but on the cell interfaces. In such
a scheme one would have q1 ≡ ρ and q3 ≡ ρetot located at the cell centers and ρu located on the

90

cell interfaces. But since q2 is also a conserved quantity we must also define a cell around q2.
The location of the cell boundaries for q1 and q3 act as cell centers for q2, whereas the locations
of the cell centers for q1 and q3 act as cell boundaries for q2.

Using staggered grids improves the accuracy of the algorithm and it also solves the odd-
even decoupling problem. It is also more stable numerically than cell-centered algoriths. Where
cell-centered algorithms sometimes crash when the algorithm is stretched too far, a staggered
grid algorithm usually survives those conditions.
→ Exercise: Show, using the example above, that a staggered grid does not have the odd-even

decoupling problem.
A drawback of staggered grids is that it requires a much more complex book-keeping of the

cells and interfaces, especially when one goes to multiple dimensions. This also could make it
slightly more difficult to implement adaptive mesh refinement methods and such.

A number of hydrodynamics codes use staggered grids. For instance, the famous ZEUS
code, often used in astrophysics, is based on staggered grids. But also many code are based on
cell-centered schemes. Both approaches have their special advantages and disadvantages.

5.9 External gravity force
It possible, without much effort, to add an external force to the hydrodynamics scheme we have
produced so far. For instance, if we wish to model the flow of gas in a gravity field, we need to
solve the following equations (1-D for simplicity):

∂tρ + ∂x(ρu) = 0 (5.33)
∂t(ρu) + ∂x(ρu

2 + P) = −ρ∂xΦ (5.34)
∂t(ρetot) + ∂x[(ρetot + P)u] = −ρu∂xΦ (5.35)

where Φ(x) is the gravitational potential. The−ρ∂xΦ term on the rhs of the momentum equation
is the force, whereas the −ρu∂xΦ term on the rhs of the energy equation is the work done by
the gravity on the total energy. The idea behind the latter term is that even though the gravity
force does not directly affect the thermal energy of the gas, it does affect the total energy of the
gas: the kinetic energy ekin = u2/2 changes due to a change in u. The source term in the energy
equation takes care of this.

An example of an application of this set of equations is that of a perturbation on an otherwise
hydrostatic atmosphere on the surface of a planet (such as Earth). Let us define x to be the height
above the surface of the planet and the gravity potential Φ(x) = g x. A static solution must
be such that the ∂t terms of the above equations will be identically zero. Also we must have,
by definition, u = 0 everywhere. The continuity equation is then automatically solved. The
momentum equation, on the other hand, becomes:

∂P

∂x
= −ρ

∂Φ

∂x
(5.36)

In discrete form this becomes:
Pi+1 − Pi−1

xi+1 − xi−1
= −ρi

Φi+1 − Φi−1

xi+1 − xi−1
(5.37)

So if we can construct a static atmosphere which obeys this equation, then the numerical hydro-
dynamics algorithm will produce perfectly zero time derivatives. In other words: it has ‘recog-
nized a static solution’. We can then add a small perturbation on this solution and see how it
moves.

91

5.10 Alternative methods for the energy equation
5.10.1 Including the gravitational potential into the total energy
If gravity forces are included, the global energy conservation is not guaranteed anymore. Some
codes therefore include the potential Φ into the total energy: etot = eth + u2/2 + Φ. In that case
one can derive that the energy equation becomes

∂t[ρ(eth + u2/2 + Φ)] + ∂x[ρ(eth + u2/2 + Φ + P/ρ)u] = ρ∂tΦ (5.38)

where the only remaining source term on the rhs is the time derivative of the potential. In a
static potential this would therefore be zero, and perfect conservation of total energy is again
guaranteed, even in the presence of gravity.

5.10.2 Using the thermal energy or entropy as the advected variable
A drawback of using the total energy ρetot = ρ(eth + u2/2) (or ρetot = ρ(eth + u2/2 + Φ) in
case of the inclusion of gravity) as the to-be-advected quantity is that this could lead to negative
pressures in the simulation, which could crash the simulation. To find the pressure at any time in
the algorithm we must first compute the u2/2 from the velocity, and then subtract this from the
total energy. In case of gravity, one should also subtract Φ. So we have:

eth = etot − u2/2 − Φ (5.39)

Now suppose we have a situation in which eth (u2/2 and/or eth (Φ, then the value of eth is
the result of the difference between two large, and nearly equal numbers. Now, the momentum
equation (which determines u) and the total energy equation (which determines etot) may always
have some small numerical errors. So these errors could then easily lead to an unwanted flip of
sign of etot−u2/2−Φ, leading to a negative thermal energy, and hence a negative pressure. This
would mean that the program will have to do an emergency stop. Problems of this kind can occur
when the flow is extremely supersonic. The total energy is then nearly completely dominated by
the kinetic energy. A tiny error in either u or etot could then lead to negative energies.

For this reason some codes prefer to let go of strict energy conservation and use another
form of the energy equation:

Dteth ≡ ∂teth + u∂xeth = −
P

ρ
∂xu (5.40)

which is the Lagrange form of the energy conservation equation (see Chapter 1). The ZEUS code
uses this kind of energy equation. The numerical integration of this equation then proceeds with
the algorithms of Chapter 3, and the rhs of the equation is added in the usual way. This form of
the energy equation has the clear advantage that it is easier to control, and negative energies do
not occur unless the time step was taken too big. The drawback is, of course, that energy is now
not anymore strictly conserved, and one must always check a-posteriori if the energy error has
not increased to unacceptable levels.

An alternative, but rather similar approach is to advect the entropy instead of the internal
energy:

TDts ≡ T (∂ts + u∂xs) = Q (5.41)

where Q is the entropy generation source term. The main advantage is that entropy generation
can be strictly controlled. This can be of great advantage, for instance in simulating atmospheres
where the entropy gradients decide about convective stability or instability of an atmosphere.

92

This method of using the entropy equation is used in, for instance, the PENCIL code, which is a
code for modeling accretion disks in astrophysics.

If the thermal energy equation or the entropy equation is used instead of the total energy,
then the importance of the use of the Von Neumann-Richtmyer artificial viscosity is amplified
enormously. This can be easily understood by looking at Eq. (5.41). Suppose we start with an
isentropic state everywhere, but we have conditions such that a shock wave forms. A shock wave
generates entropy. But if we have Q = 0, then the entropy equation will not generate entropy.
The solution of the state behind the shock will therefore clearly be wrong, and in practice it
will generate strong oscillations or other unwanted behavior. Now we must include an entropy-
generating source term in order to produce the right amount of entropy.

5.11 2-D/3-D Hydrodynamics
So far we have focused primarily on 1-D hydrodynamics. In many cases our final interest lies
in multi-dimensional gas flow, as this is a more realistic and interesting projection of reality.
Fortunately the methods we have covered so far can be relatively easily used for 2-D and 3-D
gas flow. This is done with the method of operator splitting, in which we apply our algorithms of
hydrodynamic integration alternatively in x, y and z direction. We have applied operator splitting
already before in other contexts. Here we use this technique to split the 2-D or 3-D problem into
its separate directions (Strang, 1968, SIAM, J. Num. Anal, 5, 506).

There are also computer codes that do not use directional operator splitting. They solve the
multi-dimensional problem in one go. One of the advantages of such non-splitting algorithms
is that they tend to be less prone to numerical artifacts. But the disadvantage of non-splitting
algorithms is that they have to be developed from scratch, i.e. they cannot build on algorithms
developed for 1-D. They are therefore usually harder to develop. In this lecture we will therefore
exclusively focus on the use of Strang’s directional operator splitting.

Let us write the equations of hydrodynamics in 2-D:

∂tρ + ∂x(ρu) + ∂y(ρv) = 0 (5.42)
∂t(ρu) + ∂x(ρu

2 + P) + ∂y(ρuv) = 0 (5.43)
∂t(ρv) + ∂x(ρuv) + ∂y(ρv

2 + P) = 0 (5.44)
∂t(ρetot) + ∂x[(ρetot + P)u] + ∂y[(ρetot + P)v] = 0 (5.45)

The splitting is now that we first solve

∂tρ + ∂x(ρu) = 0 (5.46)
∂t(ρu) + ∂x(ρu

2 + P) = 0 (5.47)
∂t(ρv) + ∂x(ρuv) = 0 (5.48)

∂t(ρetot) + ∂x[(ρetot + P)u] = 0 (5.49)

for one time step, and then solve

∂tρ + ∂y(ρv) = 0 (5.50)
∂t(ρu) + ∂y(ρuv) = 0 (5.51)

∂t(ρv) + ∂y(ρv
2 + P) = 0 (5.52)

∂t(ρetot) + ∂y[(ρetot + P)v] = 0 (5.53)

93

for the same time step. Some codes do first 1/2 a time step in x-direction, then 1 time step in
y-direction and finally another 1/2 time step in x-direction. This has a slightly higher accuracy.

If all the quantities live at the grid cell centers (like the algorithms shown in this chapter, i.e.
not the staggered grid ones) then one can simplify the system even more, because then the full
2-D problem ofNx×Ny grid cells can be split into a set ofNy 1-D problems in x-direction plus a
set ofNx 1-D problems in y-direction. We can then simply use the 1-D hydro solverNx times in
x-direction and Nx times in y-direction, provided that we include the perpendicular momentum
components also into the equation. So for the Ny 1-D problems in x-direction we must include
ρv as another conserved quantity and likewise for the Nx 1-D problems in y-direction we must
include ρu as a conserved quantity. Since these perpendicular momentum components act as
passive tracers (i.e. have no influence on the flow pattern), the inclusion of these components is
nearly trivial. Note that this method of splitting the 2-D problem into sets of 1-D problems is only
possible for non-staggered grids. The reason is that if, like the ZEUS code, one uses staggered
grids, then the x-momentum lives on (i + 1/2, j) interfaces while the y-momentum lives on
(i, j + 1/2) interfaces. The two momentum components therefore do not live on gridpoints that
are located on the same 1-D line. Therefore, the schemes used in ZEUS, while they use operator
splitting, they cannot go this extra step of reducing the problem to separate 1-D problems. For
codes where the momenta are at the cell centers this problem is not there and the reduction to
1-D problems is possible.

With cell-centered algorithms the 2-D or 3-D problem is therefore only marginally more
complicated (technically) than the 1-D problem. All our effort in creating a 1-D hydro solver
therefore pays off: with only a little effort a fully functional multi-dimensional program can be
created, with the 1-D hydro subroutine at its basis.

5.12 Practical matters: input and output of data
Once we wish to do serious modeling we cannot afford ad-hoc management of time steps and
output of data anymore. We must think carefully about how to input and output our data, in
particular if we wish to write a work horse application in a fast programming language such as
Fortran (either F77, F90 or F95), or C/C++. There are a couple of thoughts which might be of
use, but some thoughts apply only to codes that go beyond the simple IDL programming done in
this lecture:

1. In case of workhorse codes, it often is useful if the initial density, energy and velocity
distribution is read into the code in a file format that is similar to the output file format. In
this way an output of the hydro code can later be used as the starting point of a continued
simulation.

2. In true applications one rarely wants to store the results of each time step. That is too
storage-intensive. One typically sets pre-defined model times at which the code should
output a frame. The time stepping is then done using the usual CFL time step limit, but if
the time is about to jump over one of the pre-defined save-time, then one shortens the time
step such that the precise save time is reached. Then a dump of the current state is made,
and the simulation is continued.

3. Especially for 2-D and 3-D simulations a compact file format is useful. A simple and
reasonably compact way is to use fortran-style unformatted output. However, one should
keep in mind that on some platforms the byte-order is swapped. If a frame written on one

94

computer looks unintelligible on another computer, then one may want to look into “endian
swapping”. In IDL there is a keyword in the file management routines to automatically
swap endian. Another, quite popular method of storage is the HDF format. It is very
portable to other platforms and is particularly suited for large data volumes.

4. For safety, in particular for large multi-dimensional applications, one might want to set a
maximum number of time steps, so that if a simulation gets stuck, it won’t continue to eat
up all CPU time. Also, for similar safety concerns one might wish to set a maximum nr of
steps the code can do without writing a safety dump of its variables. And finally, it is useful
to make the code dump the entire state as it was before the time step if an unrecoverable
error occurs.

