
Chapter 7

Riemann solvers II

7.1 Roe’s linearized Riemann solver
7.1.1 The equations of hydrodynamics revisited
Before we construct our linearized Riemann solver, let us make a slightly modified definition of
the state vector q, which allows us an easy generalization of our algorithms to 3-D. We define q
to be

q =

ρetot

ρu
ρv
ρw
ρ

(7.1)

For convenience we shall index it from 0 to 4:

q0 = ρetot q1 = ρu q2 = ρv q3 = ρw q4 = ρ (7.2)

The full set of equations for 3-D hydrodynamics is then:

∂tq + ∂xfx(q) + ∂yfy(q) + ∂zfz(q) = 0 (7.3)

where

fx =

ρhtotu
ρu2 + P

ρvu
ρwu
ρu

fy =

ρhtotv
ρuv

ρv2 + P
ρwv
ρv

fz =

ρhtotw
ρuw
ρvw

ρw2 + P
ρw

(7.4)

7.1.2 Linearized Riemann solvers
We have seen that for linear problems the Riemann solver reduces to a characteristic solver. For
the full non-linear set of equations of hydrodynamics this is no longer the case. A Riemann
solver, such as Godunov’s method, is then a rather complex solver because it involves complex
and non-linear solutions to the Riemann problem at each cell interface. It is also rather costly to
solve numerically. Cheaper and elegant simplifications are linearized Riemann solvers. The way
this is done is by expressing our interface fluxes as much as possible only using the differences
in the state variables:

∆qk,i−1/2 ≡ qk,i−1/2,R − qk,i−1/2,L (7.5)

If these differences are small, then much of the algebra can be linearized to first order in∆qk,i−1/2.

109

110

If we now set the state at the beginning of each time step constant within each cell, then the
cell interfaces have jumps of the state, i.e. they define a Riemann problem. The way to linearize
this is to define an average state at the interface q̂k,i−1/2 (note: here we retain the index k of the
index notation) in some way:

q̂k,i−1/2 = Average[qk,i, qk,i−1] (7.6)

where the precise definition of the average will be defined later. For now we can simply set
q̂k,i−1/2 = (qk,i + qk,i−1)/2 for instance. Now we can express the Riemann problem in the
deviation from this average:

δqk,i−1/2,L ≡ qk,i−1 − q̂k,i−1/2 (7.7)
δqk,i−1/2,R ≡ qk,i − q̂k,i−1/2 (7.8)

If |δqk,i−1/2,L/R| # |q̂k,i−1/2| then, locally, the Riemann problem can be regarded as a linear
Riemann problem, which we have extensively discussed in Section 6.5. The advection matrix in
x direction is now simply the Jacobian ∂fx(q)/∂q, so the equation, locally between xi−1 < x <
xi becomes:

∂tδq +

(

∂fx

∂q

)

∂xδq = 0 (7.9)

The eigenvalues of the Jacobian ∂fx/∂q at the interface i − 1/2 are (for convenience we
leave out the i − 1/2 index):

λ1 = û − Ĉs (7.10)
λ2 = û + Ĉs (7.11)
λ3 = û (7.12)
λ4 = û (7.13)
λ5 = û (7.14)

with eigenvectors:

e1 =

ĥtot − Ĉsû
û − Ĉs

v̂
ŵ
1

e2 =

ĥtot + Ĉsû
û + Ĉs

v̂
ŵ
1

(7.15)

e3 =

1
2 û

2

û
v̂
ŵ
1

e4 =

v̂2

0
1
0
0

e5 =

ŵ2

0
0
1
0

(7.16)

where ĥtot = êtot + P̂ /ρ̂ is the total specific enthalpy and Ĉs =
√

γP̂ /ρ̂ is the adiabatic sound
speed. In all symbols the caretˆindicates that these are the primitive variables as derived from
the “average state” q̂i−1/2 at the location of interface i − 1/2. Note that we can derive similar
expressions for the advection in y and z direction.

111

We can now directly insert those formulae to Eq. (6.56) and apply this to the values of
δqk,i−1/2,L/R. Now the special form of Eq.(6.56) comes to our advantage, because since this
expression (and the expressions for the flux limiters) only depend on the difference δqk,i−1/2,R −
δqk,i−1/2,L ≡ qk,i−1/2,R − qk,i−1/2,L ≡ ∆qk,i−1/2, we can now forget about δqk,i−1/2,L/R and focus
entirely on ∆qk,i−1/2, which is the jump of the state over the interface. We can now decompose
∆qk,i−1/2 into the eigenvectors Eq. (7.15...7.16):

∆qk,i−1/2 =
∑

m=1···5

∆̃qm,i−1/2em,k,i−1/2 (7.17)

where (again for clarity we omit the index i − 1/2):

∆̃q1 =
γ − 1

2Ĉ2
s

{êkin∆q4 − ξ}−
∆q1 − û∆q4

2Ĉs

(7.18)

∆̃q2 =
γ − 1

2Ĉ2
s

{êkin∆q4 − ξ} +
∆q1 − û∆q4

2Ĉs

(7.19)

∆̃q3 =
γ − 1

2Ĉ2
s

{

(ĥtot − 2êkin)∆q4 + ξ
}

(7.20)

∆̃q4 = ∆q2 − v∆q4 (7.21)
∆̃q5 = ∆q3 − w∆q4 (7.22)

where êkin = (û2 + v̂2 + ŵ2)/2 and ξ ≡ u∆q1 + v∆q2 + w∆q3 − ∆q0. With these expressions
for ∆̃qi−1/2 the flux at the interface becomes (cf. Eq. 6.56) becomes1

fn+1/2
k,i−1/2 =1

2(f
n
k,i−1/2,R + fn

k,i−1/2,L)

− 1
2

∑

m=1···5

λm,i−1/2∆̃qm,i−1/2em,k,i−1/2[θm,i−1/2 + φ̃m,i−1/2(εm,i−1/2 − θm,i−1/2)]

(7.23)

where we retained the index k in the expression for the flux: fn+1/2
k,i−1/2 according to index notation.

We now see that the interface flux for this linearized Riemann solver consists of the average of
the non-linear fluxes plus a correction term in which the difference of the flux over the interface
is decomposed into eigenvectors and each component advected in its own upwind fashion.

A linearized Riemann solver is evidently not an exact Riemann solver, since the Riemann
problem is solved in an approximate way only. This is why linearized Riemann solvers are part
of the (larger) family of approximante Riemann solvers.

7.1.3 Roe’s average interface state
The final missing piece of the algorithm is a suitable expression for the “average interface state”,
or better, the “average interface primitive variables” ûi−1/2, v̂i−1/2, ŵi−1/2, ρ̂i−1/2, ĥtot,i−1/2. As
long as the numerical solution is very smooth, i.e. that |∆qk,i−1/2| # |q̂k,i−1/2|, then any rea-
sonable average would do and would probably give the right results. However, when contact
discontinuities and/or shock waves are present in the solution, then it becomes extremely impor-
tant to define the proper average such that the “linearization” (which is then strictly speaking no
longer valid) still produces the right propagation of these discontinuities.

1Warning: There was a typo in this formula until Philipp Girichidis found it, 10 January 2011.

112

A Roe solver is a linearized Riemann solver with a special kind of averaged state at the
interface. These state variables are defined as:

û =

√
ρLuL +

√
ρRuR√

ρL +
√

ρR
(7.24)

v̂ =

√
ρLvL +

√
ρRvR√

ρL +
√

ρR
(7.25)

ŵ =

√
ρLwL +

√
ρRwR√

ρL +
√

ρR
(7.26)

ĥtot =

√
ρLhtot,L +

√
ρRhtot,R√

ρL +
√

ρR
(7.27)

With these expressions for the average interface state and the above defined eigenvector decom-
position and interface flux expressions, as well as the flux limiter, the Roe solver is complete.

7.1.4 Background of Roe’s average interface state
So where do these expressions for the interface state come from? Here we follow the book
by LeVeque. The basic idea behind the Roe solver is that it should recognize when a jump of
the state qR − qL is a pure jump in one characteristic family only, and in that case produce the
exact propagation velocity. So for a shock or for a contact discontinuity belonging to just one
characteristic family the interface-average propagation matrix Â (which is the interface average
of the Jacobian ∂fx/∂q) should have the property:

Â(qR − qL) = fx,R − fx,L = s(qR − qL) (7.28)

where s is the propagation speed of this wave. Note that this should not only hold for small
qR − qL, but also when the jump is macroscopic. In case of a contact discontinuity it should get
s = u and for a shock wave it should obtain s = vs where vs is the shock velocity.

There is an elegant mathematical derivation of how we obtain Roe’s parameterization from
the above condition, which is based on the definition of a state vectorW defined as:

W =
√

ρ

htot

u
v
w
1

(7.29)

also counted from 0 to 4. The nice property of this parameter vector is that the state vector is
perfectly quadratic in the components ofW :

q =

1
γW0W4 + γ−1

2γ (W 2
1 + W 2

2 + W 2
3)

W1W4

W2W4

W3W4

W 2
4

(7.30)

113

and so is the flux fx:

fx =

W0W1
γ−1

γ W0W4 + γ+1
2γ W 2

1 − γ−1
2γ (W 2

2 + W 2
3)

W1W2

W1W3

W1W4

(7.31)

and similar for fy and fz. This purely quadratic relation is very useful for the following argu-
mentation.

If two states qR and qL are connected by a single wave (shock or contact discontinuity), then
they obey

fx(qR) − fx(qL) = s(qR − qL) (7.32)
where s is the propagation speed of this wave. We wish that our matrix Â (our “Jacobian”)
recognizes this. So it should have the property that

Â(qR − qL) = s(qR − qL) (7.33)

or in other words:
Â(qR − qL) = fx(qR) − fx(qL) (7.34)

One way to obtain such a matrix is to integrate the Jacobian matrix A(q) over a suitable path in
parameter space from qL to qR. We can do this for instance by defining a straight path:

q(ξ) = qL + (qR − qL)ξ (7.35)

so that we get

fx(qR) − fx(qL) =

∫ 1

0

∂fx(q(ξ))

∂ξ
dξ

=

∫ 1

0

∂fx(q(ξ))

∂q

∂q(ξ)

dξ
dξ

=

[
∫ 1

0

∂fx(q)

∂q
dξ

]

(qR − qL)

(7.36)

where we used ∂q(ξ)/∂ξ = (qR − qL). This the gives us the matrix Â:

Â =

∫ 1

0

∂fx(q)

∂q
dξ (7.37)

The problem with this integral is that it is not guaranteed that this produces a matrix which has
real eigenvalues. Moreover, it is hard to evaluate, and therefore computationally costly.

Now here the parameter vectorW comes in. Let us do the same trick of integration, but this
time not in q space but inW space:

W (ξ) = WL + (WR − WL)ξ (7.38)

so that we get

fx(qR) − fx(qL) =

[
∫ 1

0

∂fx(W)

∂W
dξ

]

(WR − WL)

≡ Ĉ(WR − WL)

(7.39)

114

We can do the same for qR − qL:

qR − qL =

[
∫ 1

0

∂q(W)

∂W
dξ

]

(WR − WL)

≡ B̂(WR − WL)

(7.40)

So we have now two matrices B and C. We can now construct the matrix Â:

Â = ĈB̂−1 (7.41)

Now the nice thing of the parameter vector W is that both q and fx are purely quadratic in W ,
and therefore the ∂q/∂W and ∂fx/∂W are linear in W . This makes it much easier to evaluate
the integral through W space! We shall not derive the final expressions. It suffices to say that
if we would derive Â in the above way we obtain a matrix with eigenvalues and eigenvectors as
we have given above. Roe’s choice of average interface state variables can now be understood
as originating from the fact that this particular choice of parameter vector W makes q and fx

quadratic inW .

7.1.5 The complete recipe of a Roe solver
Although we have discussed the complete algorithm already, let us finish this section with a
point-by-point recipe for a Roe solver:

1. Determine first the∆t using a CFL number of 0.5

2. Construct the state vector q = (ρetot, ρu, ρv, ρw, ρ) at each cell center. This qi also auto-
matically defines the states at each side of the interfaces: qi−1/2,R = qi, qi−1/2,L = qi−1.

3. Construct Roe’s averages at the cell interfaces.

4. Using Roe’s averages, create the eigenvectors and eigenvalues

5. Compute the flux jump over the interface and decompose this jump into the eigen-components
to obtain the values of ∆̃qk,i−1/2.

6. Compute the flux limiter for each of the eigen-components.

7. Compute the symmetric flux average (fi−1/2,L + fi−1/2,R)/2, and add the diffusive correc-
tion term using the flux limiter and the ∆̃q. This creates the interface flux.

8. Now update the state vector using the interface fluxes and the∆t computed using the CFL
condition.

9. End of time step; off to the next time step

7.2 Properties of the Roe solver
7.2.1 Strengths of the Roe solver
The Roe solver is a very powerful solver:

• It resolves shocks and contact discontinuities very tightly (in roughly 3 grid points). It is
therefore significantly higher resolution than classical hydrodynamics solvers.

115

• It does not require any artificial viscosity for shocks because it treats shocks directly. It is,
so to speak, a shock-capturing scheme.

• It has a very low numerical viscosity/diffusivity.

• It is strictly conserving in mass, momentum and energy.

• Because it treats pressure gradients as characteristics, sound waves are propagated with the
same precision as moving matter.

7.2.2 Problems of the Roe solver

The Roe solver has excellent performance for many problems, but sometimes it can produce
problems. Here is a list of known problems of the solver:

• Under some (rare) conditions it can try to create expansion shocks where it should cre-
ate smooth expansion waves. This is because the Roe solver is built in such a way as to
recognize Rankine-Hugoniot jump conditions even if they are the reverse. A Roe solver
decomposes any smooth wave into a series of small contact discontinuities or shocks. Even
for expansion waves it can happen that one of these shocks becomes strong and produces
an expansion shock. This is clearly unphysical and violates the entropy condition. If this
happens an entropy fix is necessary: a trick that disallows an expansion shock to form. We
refer to LeVeque’s book for details.

• Just behind strong shocks in 2-D or 3-D flows, when the shock is parallel to the grid, some-
times waves can appear. This is an odd-even decoupling problem, and fixes have been
proposed which involve a minute amount of diffusion parallel to the shock, but only in the
neiborhood of the shock.

• Also for grid-parallel shocks one can sometimes observe severe protrusions appearing which
have a pyramid shape and a checkerboard pattern. This is known as the carbuncle phe-
nomenon. This problem is rare, but if it happens it is hard to solve.

• Due to the fact that the total energy equations is used in Roe solvers, in case of extremely
supersonic flows it can happen that small errors in the momentum equation can yield nega-
tive thermal energies (because eth = etot −u2/2). This can be a potentially serious problem
of all schemes that use the total energy equation. Various fixes can be considered, which
can be useful in various regimes, but a generally valid solution is difficult.

• A rare, but possible problem of the Roe solver is that it does not guarantee that the interface
flux that it produces is physical. For instance in the Riemann problem with γ = 1.5, ρL = 1,
uL = −2, PL = 4/3 and ρR = 4, uR = 1 and PR = 13/3 the first order upwind flux has an
energy flux but no mass flux (Eulerink & Mellema 1995). This is clearly unphysical, and
can lead to numerical problems.

In general, though, the Roe solver is quite stable and very non-viscous. It is a truly high-
resolution method.

116

7.3 The HLL family of solvers
We have seen that the Roe solver splits the∆q (where q is the state vector) into their projections
onto the basis of eigenvectors of the Jacobian. Let us write each of these components of ∆q as
∆kq where k is the index of which eigenvector is meant. Each of the∆kq jumps is advected with
its own speed: the characteristic velocity λk, which is the eigenvalue of the Jacobian matrix. This
is precisely the scenario depicted in Fig. 6.1. Each of these moving jumps is in fact a wave, and
λk is the wave speed. We know from the true solutions of the Riemann problem for the Euler
equations (Fig. 6.3) that in reality not every wave is a jump: in particular the expansion wave
is not a jump. In the Roe solver we just approximate each of them to be a jump, based on the
semi-linearized set of equations.

Another Riemann solver, which also approximates all waves as jumps, is the HLL Riemann
solver and its various derivatives. HLL stands for Harten, Lax and van Leer, who first proposed
a method of this kind. The difference between the HLL family of solvers and the Roe solver is
the wave propagation speeds λk and the wave decompositions of∆q into∆kq are not rigorously
derived from the eigenvectors and eigenvalues of some approximation of the Jacobian matrix.
Instead some simpler physical arguments are used to “guess” these values. Strictly speaking
the HLL family of solvers allow an infinite number of variants because it is partly left to the
developer of the HLL method which recipe to take to construct the wave propagation speeds λk

and the decomposition of∆q into waves∆kq.
Let us first look at HLL type solvers in a general sense, and later worry about how exactly

to compute the λk and the waves∆kq.
Suppose we have K waves (i.e. k = 1 · · ·K) ordered such that λk ≤ λk+1. Once we have

decomposed ∆q into ∆kq with wave speeds λk we can write the state q(x, t) near the interface
i + 1/2 as:

q(x, t + ∆t) = qi +
∑

k:x>xi+1/2+λk∆t

∆kqi+1/2 ≡ qi+1 −
∑

k:x≤xi+1/2+λk∆t

∆kqi+1/2 (7.42)

That is: the state q(x, t) near the cell interface is split into K + 1 regions. The first and the last
have q = qi and q = qi+1 respectively. And in the wave fan region we haveK − 1 sub-regions
of constant state q given by the above equation. For the flux that use for the cell updates we are
only interested in q̄i+1/2 ≡ q(x = xi+1/2, t + ∆t), meaning we get:

q̄i+1/2 ≡ qi +
∑

k:λk∆t<0

∆kqi+1/2 ≡ qi+1 −
∑

k:λk∆t≥0

∆kqi+1/2 (7.43)

Strictly speaking, we can now compute a flux f̄i+1/2 = f(q̄i+1/2) and we are done: we now
have a way to express the interface flux of this approximation of the Riemann solution. However,
it turns out that a better (more stable and reliable) way to compute the interface flux is to note
that one can construct also wave jumps in the flux∆kf and use the property that:

∆kf = λk∆kq (7.44)

This property is the equivalent of the Rankine-Hugoniot condition for shocks, but now applied
to any wave. It basically guarantees that wave k indeed propagates with speed λk. In this way
we can now construct the flux at the interface by adding up the jumps, like in the case of the
construction of q̄i+1/2:

f̄i+1/2 ≡ fi +
∑

k:λk∆t<0

λk∆kqi+1/2 ≡ fi+1 −
∑

k:λk∆t≥0

λk∆kqi+1/2 (7.45)

117

Constructing the interface flux in this way is the basis of the HLL family of approximate Riemann
solvers.

The above expression is still first order. To make the scheme second order one can use
Eq. (6.56), which we repeat here using the∆k notation:

fn+1/2
i+1/2 =1

2(f
n
i+1/2,R + fn

i+1/2,L)

− 1
2

∑

k=1···K

[θk,i+1/2 + φ̃k,i+1/2(εk,i+1/2 − θk,i+1/2)]∆kf
n
i+1/2

(7.46)

where φk,i+1/2 is the flux limiter of wave k. This is still precisely the same method of making
the scheme higher order as we used for the Roe solver.

To complete our scheme we must ow choose λk and ∆qk in a clever way. This is the topic
of the rest of this section.

7.3.1 The HLL solver
The simplest solver of this kind is the original one. It ignores the middle wave (the mass-
advection wave) and decomposes∆q into twowaves∆(−)q and∆(+)q which are the forward and
backward moving sound waves. This gives us a left state qL,i+1/2 = qi, a right state qR,i+1/2 =
qi+1 and a middle state qM,i+1/2 which is assumed to be:

qM =
λ(+)qR − λ(−)qL + fL − fR

λ(+) − λ(−)
(7.47)

(where we dropped the i + 1/2 for notation convenience). Using the above expressions one can
derive that the flux at the interface is then:

f̄i+1/2 =

fi if λ(−) ≥ 0
λ(+)fi−λ(−)fi+1+λ(+)λ(−)(qi+1−qi)

λ(+)−λ(−)
if λ(−) < 0 < λ(+)

fi+1 if λ(+) ≤ 0

(7.48)

So what about the expressions for λ(−) and λ(+)? There is a whole variety of proposed
expressions for these values. The simplest is due to Davis (1988):

λ(−),i+1/2 = ui − ai λ(+),i+1/2 = ui+1 + ai+1 (7.49)

where a is the sound speed. But there are many other versions too. See the book by Toro for an
in-depth discussion.

One of the main disadvantages of this HLL solver is that it cannot keep contact discontinu-
ities sharp. This is not surprising since we have no middle wave in this scheme.

7.3.2 The HLLC solver
A newer version of the HLL scheme is the HLLC scheme, where the C stands for central wave:
this is a method which does include the middle wave that is missing from the standard HLL
scheme. The general way to construct this scheme is the same as shown above. Instead of 2
waves and 3 regions of constant q we now have 3 waves and 4 regions of constant q. While the
general method is the same, the details of the construction of the HLLC method (and its various
estimates of the wave speeds) requires some more in-depth discussion. We refer to the book of
Toro for these details.

118

7.4 Source extrapolation methods
One major disadvantage of Riemann solvers in general is that they are, by their structure, less
capable of “recognizing” (seme-)static solutions in which pressure gradients are compensated
by an external force (typically gravity). To demonstrate what is meant let us take the example
of a hydrostatic atmosphere (e.g. Earth’s atmosphere) with small perturbations on it (e.g. the
formation of clouds). We want that the unperturbed atmosphere is recognized by the method
in the sense that the method perfectly keeps the static atmosphere intact and does not produce
wiggles, or worse: entropy. A hydrostatic atmosphere obeys:

dP

dz
= −ρg (7.50)

where z is the vertical coordinate and g is the gravitational constant of the atmosphere (g '
1000cm/s2). Let us discretize this as:

Pi+1 − Pi

zi+1 − zi
= −1

2(ρi+1 + ρi)g (7.51)

and let us construct the solution by choosing P = Kργ with K constant (an adiabatic atmo-
sphere) and choosing ρ(z = 0) as the density at the base. We can then integrate (for a choice of
K) from bottom to some height above the surface using Eq.(7.51). Since this equation is implicit
in ρi+1 one must solve for each new ρi+1 using for instance an iteration at each new grid point
until Eq.(7.51) is satisfied. We then get a hydrostatic atmosphere that is consistent.

If we insert this into a time-dependent hydro code we want that this hydrocode leaves this
solution exactly intact (i.e. that it does not introduce perturbations). For classical numerical
hydro schemes of Chapter 5 this is in fact not difficult, especially not if a staggered grid is used.
This is because the ∂P/∂z term is treated as a source term in such methods. We then have two
source terms: the ∂P/∂z and the −ρg term. If we discretize these two terms in exactly the
same way as in Eq.7.51, then both terms cancel out exactly (for this hydrostatic solution) and
the hydrostatic solution is kept exactly intact (to machine precision). We can then safely study
tiny perturbatations of this atmosphere without the worry that we may in fact be involuntarily
studying the intrinsic noise of the method instead.

For Riemann solvers, however, this is not so easy. It is a fundamental property of these
methods to include the ∂P/∂z term in the advection part, while the gravity force remains a
source term (and can not be treated in the advection part). The pressure gradient force and the
gravity force are therefore treated in fundamentally different ways and one cannot guarantee that
they will exactly cancel for hydrostatic solutions.

To solve this problem Eulderink & Mellema (1995, A&ASup 110, 587) introduced the
concept of spatial flux extrapolation. A very similar, but easier method was proposed by LeVeque
(1998, J.Comp.Phys. 146, 346). We will use a combination of both formalisms here.

Consider the generalized hyperbolic equation with a source term:

∂tq(x, t) + ∂xf(q(x, t)) = s(x) (7.52)

The traditional way to do operator spliting is to first solve ∂tq(x, t) + ∂xf(q(x, t)) = 0 for one
time step using for instance a Riemann solver and then solve ∂tq(x, t) = s(x) for the same time
step (by simply adding the source). This gives us the problem of not recognizing steady states.
A steady state is a solution of the equation

∂xf(q(x, t)) = s(x) (7.53)

119

The source extrapolationmethod for time-dependent hydrodynamics is inspired on this station-
ary equation. At the start of each time step we construct a subgrid model q(x, t = tn) (for
xi−1/2 < x < xi+1/2) where q(x = xi, t = tn) = qi such that within the cell q(x, t = tn) is a
solution of 7.53. To make things simpler we assume that s(x) is constant within a cell, so we
get:

∂xf(q(x, t)) = si for xi−1/2 < x < xi+1/2 (7.54)

From this equation we could in principle solve for q(x, t) within cell i and thereby obtain values
of q at the left and right sides of each interface: qL,i+1/2 and qR,i+1/2 (we come back in an minute
to this). These are then the values we put into a Riemann solver to produce our interface flux
fi+1/2 which we use for the state update. It should be noted, however, that since now the states
on both sides of the interface are no longer spatially constant (they follow the subgrid model).
So in principle we have a generalized Riemann problem on the cell interface, in which the states
are not constant. Such generalized Riemann problems are very difficult to solve. So instead, we
simply ignore the fact that the states are strictly speaking not constant on both sides, and simply
use qL,i+1/2 and qR,i+1/2 as the two states of a classical Riemann problem which we then solve
with our favorite method.

Now let’s come back to the solution of Eq. 7.54. If f(q) is a linear function of q, say
f(q) = uq where u is a velocity, then the solution of Eq. 7.54 is simple:

qR,i−1/2 = qi − 1
2∆xisi/ui (7.55)

qL,i+1/2 = qi + 1
2∆xisi/ui (7.56)

This works fine as long as u (= 0. Once u approaches zero we are in trouble. Moreover, if f(q)
is a non-linear function of q then we can write:

fR,i−1/2 = f(qi) − 1
2∆xisi (7.57)

fL,i+1/2 = f(qi) + 1
2∆xisi (7.58)

which is fine, but solving qR,i+1/2 from a given flux fR,i+1/2 is non-trivial, and in the case of
the Euler equations typically has two different solutions, or one single solution or no solutions.
It is therefore often unpractical to try to determine the qL/R,i+1/2 from fL/R,i+1/2. It turns out,
however, that for Riemann solvers that are based entirely on propagating waves ∆kf = λk∆kq
where ∆k is the k-th wave and λk is its propagation speed, one can use ∆fi+1/2 = fR,i+1/2 −
fL,i+1/2 as input to the wave-decomposition routine while keeping qL,i+1/2 = qi and qR,i+1/2 =
qi+1 as the primitive variables used to compute the eigenvectors and eigenvalues. In particular
for the Roe solver this hybrid approach works well.

Now how does this solve the problem of recognizing a steady-state solution? The trick is
that if the linear subgrid model described in Eq. (??) is sufficiently accurate, then one will obtain
for the steady state solution:

fL,i+1/2 = fR,i+1/2 (7.59)

meaning that
∆fi+1/2 = 0 (7.60)

If we now use Eq.(7.46) then we get:

fn+1/2
i+1/2 = 1

2(f
n
i+1/2,R + fn

i+1/2,L) (7.61)

120

because by virtue of ∆fi+1/2 = 0 the entire Riemann solver part drops out of the equation now.
What is left is:

qn+1
i = qn

i −
∆t

2∆x
[f(qn

i+1) − f(qn
i−1)] + ∆tsn

i (7.62)

So if we construct our steady state initial condition such that

f(qi+1) − f(qi−1)

2∆x
+ si = 0 (7.63)

then the method finally recognizes the static solution down to machine precision.

7.5 Employing slope limiters before the Riemann solver step
So far we have studied solvers in which we could clearly distinguish two or three wave fam-
ilies. We were then able to apply flux limiters (or equivalently, slope limiters) to each wave
(cf. Eq.7.46). This method ensures that the slope in each wave mode is taken into account and
therefore gives second order accuracy in space.

Another method of making Riemann solvers higher-order is to apply slope limiters (not
flux limiters) before the Riemann problem is solved. The trick is to extrapolate the cell-centered
primitive variables ρ, P , *u to the cell-walls using a linear subgrid model. We can also extrapolate
the conserved quantities ρ, ρ*u, ρetot, whichever produces the best results. This then gives us the
left and right states at the cell walls (qL,i+1/2 and qR,i+1/2), which defines a Riemann problem
which we can then solve using any solver we want. Contrary to the flux limiter recipe of Eq.7.46
this slope limiter method can also be applied to Riemann solvers that do not approximate the
problem into jump-like waves. This is therefore a way to make the original Godunov solver
higher order.

This method is in a way similar to Section 7.4, but there is an essential difference: here we
use neighboring points to compute the slope of the linear subgrid model (instead of the source
function). We therefore get non-zero slopes also for cases without source. We can employ all the
machinery of Chapter 4 to produce the best possible linear subgrid model using e.g. MINMOD
or SUPERBEE slope limiters.

One major problem that we encounter if we simply apply this method as-is, is that it quickly
becomes unstable. It turns out (see Toro’s book) that this instability problem can be elegantly
solved by producing adapted left- and right interface states q̃L,i+1/2 and q̃R,i+1/2 from the interface
states qL,i+1/2 and qR,i+1/2 that come out of the slope limiter method by advancing these half a
time step in time in the following way:

q̃L,i+1/2 = qL,i+1/2 +
1

2

∆t

∆x
[f(qR,i−1/2) − f(qL,i+1/2)] (7.64)

q̃R,i+1/2 = qR,i+1/2 +
1

2

∆t

∆x
[f(qR,i+1/2) − f(qL,i+3/2)] (7.65)

(see book by Toro, but beware of different notation). Note that the left one is updated using
qR,i−1/2 and qL,i+1/2, while the right one is updated using qR,i+1/2 and qL,i+3/2. These equations
are saying that the subgrid model within each cell individually is advanced half a time step.
Using this method we obtain a stable higher-order scheme.

The method is now completed by inserting q̃L,i+1/2 and q̃R,i+1/2 into our favorite Riemann
solver and obtaining the interface flux with which we update the cell centered state variables.

121

NOTE: The use of the slope limiters before the Riemann step excludes the use of the source
extrapolation method described in Section 7.4, and vice versa. If one wishes to use the source
extrapolation method then only the flux limiter method after the Riemann step (Eq. 7.46) can be
used.

7.6 The PPMMethod
A very well-known Riemann solver method is the “Piecewise Parabolic Method” (Colella &
Woodward 1984, J.Comp.Phys. 54, 174). It was designed before many of the above described
methods were developed, and therefore it lies a bit off from the main track as described above,
but in large part it follows (and indeed pioneered) the same ideas. It has proved to be a pretty
powerful method and is still very often used. We will describe it very briefly here, but we will
not go into details because the method is rather complex and has many fine-tuning aspects.

The main idea of this Riemann solver is to use a reconstruction step before the Riemann
step (see Section 7.5). But while we used linear reconstruction in Section 7.5, the PPM method
uses quadratic reconstruction. In other words: starting from the cell-center values of the prim-
itive variables ρ, p and *u each cell subgrid model is a parabola. In the PPM method care is
taken that no overshoots happen (TVD scheme) and that in general the reconstruction is well-
behaved. Using these parabolic subgrid models, the primitive variables on both sides of each
of the interfaces can be calculated. We know from Section 7.5 that if we directly insert these
values into our Riemann problem solver, we get an unstable scheme. The PPM method solves
this using an approximation. It finds the fastest moving left- and right- characteristics and makes
an average of the primitive variables over these domains. This is the PPM version of the half-
step-interface-update described in Section 7.5. It is less mathematically rigorous, but in practice
it works.

Now these left- and right- interface values can be inserted in a Riemann solver code. Again,
as in Section 7.4, the solution to the true (generalized) Riemann problem in this case is very
complex and no analytic solutions exist of generalized Riemann problems with parabolic spatial
dependency of the variables on both sides. Therefore, as before, the approximation is made to
solve the classical Riemann problem, with constant states on both sides, even though we know
that the states on both sides are not constant.

We refer to the original paper by Colella & Woodward 1984 for details of the method and
how the method if fine-tuned.

7.7 Code testing: the Sod shock tube tests
The Sod shock tube test of Section 6.3.2 can be used to test the performance of our computer
program. We leave it to the reader to text the algorithms of the previous chapter on this kind of
test. Here we merely shock the performance of the Roe solver on a test with ρL = 105, PL = 1,
uL = 0, ρR = 1.25 × 104, PR = 0.1, uR = 0 and γ = 7/5. The result is shown in Fig. 7.1.

122

Figure 7.1. The result of the Roe solver with superbee flux limiter on a Sod shocktube test with
ρL = 105, PL = 1, uL = 0, ρR = 1.25 × 104, PR = 0.1, uR = 0 and γ = 7/5. Solid line:
analytic solution; symbols: Roe solver.

