
Chapter 8

Implicit integration, incompressible flows

The methods we discussed so far work well for problems of hydrodynamics in which the flow
speeds of interest are not orders of magnitude smaller than the sound speed. There are, however,
many situations in which we are interested in flows that are very subsonic. For instance the flow
of air in the Earth’s lower atmosphere, the flow of water in oceans, etc. In such cases it is rea-
sonable to assume that there is pressure equilibrium everywhere to the extent that the gas/fluid
will not be accelerated to velocities anywhere near the sound speed. In other words, the flow is
always very subsonic: |!u| ! Cs. In such cases we are not interested in the detailed propagation
of sound waves, but in the much slower movement of the fluid itself. Can we use the methods
of the previous chapter for such problems? Yes, we can, but it will become extremely compu-
tationally expensive to model any appreciable flow of the fluid. Here is why: if we determine
the time step from the CFL condition (see Chapter 3), then the time step is limited by the fastest
characteristics. In this case these are clearly the sound waves. If, for example, our typical flow
moves at speeds of less than 0.01 times Cs, then the time step is 100 times smaller than required
for the advection of the fluid itself. So the fast characteristics may not be interesting for us, but
they do exist, and not obeying the CFL condition for them (i.e. taking the CFL condition for the
fluid movement only, which gives a 100 times larger time step in our example) would simply
blow up our code. The problem here is that the sound waves exist, if we like them or not. And
they limit the time step. Suppose we want to model the flow of fluid from the left boundary of our
domain to the right, over 100 grid points. For pure advection (disregarding the sound waves) the
CFL condition with CFL number 0.5 requires of the order of 200 time steps for the fluid to move
into the domain on the left and out of the domain on the right. But because the sound waves are
much faster, say 100× faster, they limit the time step to a 100× smaller value, meaning that our
model now requires 20000 time steps. It is clear that this is not very practical, and alternative
methods must be found to allow us to keep our time step such that it obeys the CFL condition
for the fluid motion only, not for the sound waves.

Problems of this kind, where the time scales of interest are much larger than the formal
shortest time scale of the problem, are called “stiff”. This is a very common complication in
numerical integration of ordinary and partial differential equations (PDEs). If the rapid modes
of the problem quickly relax to a secular equilibrium (i.e. a quasi-equilibrium), then one may
be more interested in the much longer time scale evolution of the system, without wanting to
waste CPU time on the short-time-scale modes that are anyway related to their quasi equilib-
rium, and hence do not change on these short time scales. An example of a typical “stiff” partial
differential equation is that of the diffusion equation. The shortest time scales are represented
by the smearing-out of the narrowest peaks. In more mathematical terms: the highest !k modes

123

124

damp out the quickest. In typical applications these highest !k modes damp out so quickly that
they have reached their quasi-equilibrium already in the first few time steps. The more interest-
ing longer timescale evolution (“secular evolution”) concerns much smaller !k modes, i.e. much
longer wavelength modes. These could in principle be followed sufficiently accurately with time
steps much larger than the formal CFL condition. The CFL condition limits the time step to the
damping time of the modes with a wavelength as large as two grid points. However, since these
modes are expected to be always near their equilibrium, we are not interested in modeling this
system at these very small time steps. Numerical stability, however, forces us to do this, thereby
forcing us to waste a lot of CPU time.

To solve problems of “stiff” nature, such as the diffusion problem or the problem of very
subsonic flow, a fundamentally different way of integration of the partial differential equations
has to be introduced. For very subsonic flow we also make an approximation to the flow equa-
tions. All these techniques require the solution of large sets of coupled linear equations, and
the solution of these equations requires special techniques, which we will briefly outline here
(though this is a topic that deserves an entire one-semester lecture!).

We will start out with a simple example of an ordinary differential equation to demonstrate
the principle of stiffness. Then we will concern ourselves with the diffusion equation and how
to solve this efficiently using “implicit integration”. We will then generalize this to 2-D and
3-D, and turn then to general methods for the solution of multi-dimensional parabolic partial
differential equations.

We will then turn to the equations very subsonic (i.e. incompressible) flows. We shall see
that the solution requires similar techniques as for parabolic PDEs to solve for the pressure. Once
this is done, we can use our classic explicit advection schemes for the propagation of the fluid.

8.1 Simple example: an ordinary differential equation
8.1.1 Stiffness of an ordinary differential equation
Let us start with a simple example of a stiff ordinary differential equation:

d

dt

(

q1

q2

)

=

(

−1 0
0 −100

) (

q1

q2

)

(8.1)

Suppose at t = 0 we start with q1 = 1 and q2 = 1. Now let us integrate this using forward Euler
integration, i.e. simple first order explicit integration:

(

qn+1
1

qn+1
2

)

=

(

qn
1

qn
2

)

+ ∆t

(

−1 0
0 −100

) (

qn
1

qn
2

)

(8.2)

The CLF condition for this equation, with CFL number 0.5, is ∆t = 0.005. If we are interested
mainly in the behavior of q1, then this time step is very small. For q1 alone a time step of
∆t = 0.5 would be fine. Of course, in this simple example we could indeed integrate q1 with a
different time step than q2, but in more realistic cases one cannot always separate the variable so
easily. In such cases one must integrate the entire set of equations together, and a common time
step is required, which must then be the smallest of the two, i.e. ∆t = 0.005. For following our
variable of interest, q1, we now have to perform many hundreds of time steps, much more than
we would expect judging solely from the slow variation of q1. In fact, after the initial fast decay
of q2, even q2 does not change very much anymore, as it reached its equilibrium state already
long before q1 has changed appreciably. So in this example we are taking very small time steps,

125

much smaller than strictly required for following the variations of q1 and q2. It is only required
for numerical stability.

8.1.2 Implicit integration: the backward Euler method
An efficient and very stable way to solve this stiffness problem is to use implicit integration,
which is also often called backward Euler integration. We have seen already an example of this
for an ordinary differential equation (ODE) in chapter 3. The trick is to use not the values of q
at time t = tn but their future values at time t = tn+1 for the evaluation of the right-hand-side of
the equation. Since these future values are not yet known at t = tn, this poses a chicken-or-egg
problem. This problem can be solved if one writes the set of equations for qn+1 such that all the
future variables qn+1 that were initially on the right hand side are now on the left hand side. For
linear equations this can then be written as a matrix equation which can be solved using standard
matrix equation solvers.

Let us put our above example in implicit form:
(

qn+1
1

qn+1
2

)

=

(

qn
1

qn
2

)

+ ∆t

(

−1 0
0 −100

) (

qn+1
1

qn+1
2

)

(8.3)

where the difference with Eq.(8.2) is only in the last vector where n was replaced by n+1. Now
let us reorder the n + 1 variables to the left and all n variables to the right:

[

1 − ∆t

(

−1 0
0 −100

)](

qn+1
1

qn+1
2

)

=

(

qn
1

qn
2

)

(8.4)

If we define the matrixM to be:

M = 1 − ∆t

(

−1 0
0 −100

)

(8.5)

and vector q to be

q =

(

q1

q2

)

(8.6)

then the above matrix equation is:
Mqn+1 = qn (8.7)

This is the matrix equation we now have to solve at each time step. For our simple example this
becomes:

(

1 + ∆t 0
0 1 + 100∆t

) (

qn+1
1

qn+1
2

)

=

(

qn
1

qn
2

)

(8.8)

which can be easily solved:

qn+1
1 = qn+1

1 /(1 + ∆t) (8.9)
qn+1
2 = qn+1

2 /(1 + 100∆t) (8.10)

The nice property of this solution is that there is no positive∆t for which qn+1
1 or qn+1

2 becomes
negative. When using the explicit Euler method taking∆t larger than the CFL limit will lead to
negative values. Implicit integration, as demonstrated here, is therefore unconditionally stable,
even though for large∆t one should not expect the solution to be accurate. However, suppose we
take ∆t to be too large for an accurate integration of q2, this is not too problematic, because we

126

are anyway interested mainly in q1 in our example. Could an inaccurate integration of q2, in more
complex examples, compromise the accuracy of q1? Yes, it could. But typically the faster modes
(in this case q2) quickly reach a semi-steady-state (a quasi-equilibrium), and this state is reached
even when taking very large time steps for q2. The way in which q2 reaches its quasi-steady state
may be inaccurate if one takes too large time steps, but once it reaches it semi-steady state, it
stays there and the implicit method gives the right answer for q2 from that point onward. So as
long as we are interested solely in q1 and we take a time step that is small enough for an accurate
integration of q1, then using an implicit method guarantees stability and accuracy for q1, even if
the problem is more complex than shown above.

So does this mean that the above simple implicit integration method is a simple method that
can easily be applied to any problem? The answer is, unfortunately, no. In the above example it
was easy to solve the matrix equation because the matrix was diagonal. In more general cases the
matrix will not be strictly diagonal, and may be pretty large. For instance, if one has a q vector
of 100 components, and the 100×100 matrix M has all its elements non-zero, then an analytic
solution for qn+1 from qn is not practical. One then needs to resort to standard matrix equation
solvers.

8.1.3 A standard matrix equation solver: LU decomposition
There are many different methods for solving matrix equations. I can warmly recommend the
book by Press et al. Numerical Recipes in C or Numerical Recipes in Fortran. Here we shall
focus on the most popular method, the LU decomposition.

Suppose we wish to solve the following equation:

α11 0 0 0
α21 α22 0 0
α31 α32 α33 0
α41 α42 α43 α44

x1

x2

x3

x4

=

y1

y2

y3

y4

(8.11)

for (x1, x2, x3, x4). The matrix here is lower triangular, meaning that the elements above the
diagonal are all zero. For this special case the solution is simple. We start by solving the first
equation: x1 = y1/α11. Once we know this, the second equation becomes x2 = (y2−α21x1)/α22.
Since x1 is known, x2 is directly obtained by this expression. Next, we find x3 by x3 = (y3 −
α31x1−α32x2)/α33, etc until all values of x are obtained. Equations of the type 8.11 are therefore
trivially solved. Also upper-triangularmatrix equations are trivially solved in a similar manner:

β11 β12 β13 β14

0 β22 β23 β24

0 0 β33 β34

0 0 0 β44

x1

x2

x3

x4

=

y1

y2

y3

y4

(8.12)

Now, suppose we wish to solve the following non-trivial matrix equation:

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

x1

x2

x3

x4

=

y1

y2

y3

y4

(8.13)

Then unfortunately we do not have such a simple method. We can try to create an upper-
triangular or lower-triangular matrix equation out of this by Gaussian elimination. But a more

127

useful method is to try to write the matrix as a product of a lower-triangular matrix and an
upper-triangular matrix:

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

=

α11 0 0 0
α21 α22 0 0
α31 α32 α33 0
α41 α42 α43 α44

β11 β12 β13 β14

0 β22 β23 β24

0 0 β33 β34

0 0 0 β44

(8.14)

or in matrix notation:
A = L · U (8.15)

Finding the components of L andU for any given matrixA is not trivial, but numerous off-the-
shelf routines are available to make this LU-decomposition of the matrixA, for instance, in the
book of Press et al, cited above. But once they are found, the solution to the equation

L · U · x = y (8.16)

is easily found using the above sequential procedure.
The nice property of this LU-decomposition method is that once these two triangular matri-

ces are found, the solution x can be found for a great number of vectors y without the need for
recomputing the matrices L andU all the time.

8.2 A 1-D diffusion equation
Suppose we wish to solve the following diffusion equation

∂q

∂t
−

∂

∂x

(

D
∂q

∂x

)

= b (8.17)

where D is a diffusion constant. Let us assume D =constant and the grid spacing ∆x is also
constant. The source term b does not necessarily have to be constant. The forward Euler (i.e.
explicit) integration of the equation can be written as:

qn+1
i = qn

i +
∆tD

∆x2
(qn

i+1 − 2qn
i + qn

i−1) + ∆tb (8.18)

The CFL condition for this equation is

∆t ! 0.5
∆x2

D
(8.19)

This condition is very restrictive for fine grid resolution (small∆x). The short time scale comes
about because the highest k modes (with a wavelength twice the grid spacing) have the shortest
time scale. It turns out, however, that these high-k modes also damp out quickly, so after a short
time they have become irrelevant; we do not need to model them any longer. But these modes
are still there and if∆t is larger than the CFL condition these modes explode.

So let us write the equation in implicit form:

qn+1
i = qn

i +
∆tD

∆x2
(qn+1

i+1 − 2qn+1
i + qn+1

i−1) + ∆tb (8.20)

128

Now sort things:
qn+1
i −

∆tD

∆x2
(qn+1

i+1 − 2qn+1
i + qn+1

i−1) = qn
i + ∆tb (8.21)

We can write this as a matrix equation:

Aqn+1 = qn + ∆tb (8.22)

The solution would then formally be:

qn+1 = A−1(qn + ∆tb) (8.23)

but in practice one never calculates the matrixA−1, nor its LU components. The reason is that
the matrix A is a sparse matrix, meaning that only a very limited subset of its elements are
non-zero. It requires therefore very little storage space to store the matrix A is the computer.
However, the inverse matrixA−1 is non-sparse. Typically all its elements are non-zero. It would
therefore require quite a bit of storage space, and moreover it would require an enormous amount
of computational effort to create the matrixA−1.

Instead, there are various methods for solving matrix equations where the matrix is sparse.
The above matrix has a special structure: it is tridiagonal. A tridiagonal matrix of, say 7×7 has
the following form:

b1 c1 0 0 0 0 0
a2 b2 c2 0 0 0 0
0 a3 b3 c3 0 0 0
0 0 a4 b4 c4 0 0
0 0 0 a5 b5 c5 0
0 0 0 0 a6 b6 c6

0 0 0 0 0 a7 b7

(8.24)

→ Exercise: Prove that, for Eq.(8.21), the matrixA has a tridiagonal form. Give an expression
for ai, bi and ci for 2 ≤ i ≤ N − 1 (where N is the grid size). At the left boundary require
that q = K (for some arbitrary numberK) and at the right boundary require that ∂q/∂x = 0.
Once Eq.(8.21) is written in matrix form Eq.(8.22) with A a tridiagonal matrix, then the

solution is relatively simple. Let’s assume we haveN = 7, i.e. 7 grid points, so that we can write
this equation in the following way:

b1 c1 0 0 0 0 0
a2 b2 c2 0 0 0 0
0 a3 b3 c3 0 0 0
0 0 a4 b4 c4 0 0
0 0 0 a5 b5 c5 0
0 0 0 0 a6 b6 c6

0 0 0 0 0 a7 b7

qn+1
1

qn+1
2

qn+1
3

qn+1
4

qn+1
5

qn+1
6

qn+1
7

=

rn+1
1

rn+1
2

rn+1
3

rn+1
4

rn+1
5

rn+1
6

rn+1
7

(8.25)

where r contains the entire right-hand-side of the equation. One can simply start an elimination
procedure:

qn+1
1 = (r1 − c1q

n+1
2)/b1 (8.26)

qn+1
2 = (r2 − a2r1/b1 − c2q

n+1
3)/(b2 − a2c1/b1) (8.27)

qn+1
3 = (8.28)

129

One sees that every new equation solves on variable but introduces a new one. However, once
one arrives at i = N then the equation does not introduce any new variables and the equation
gives the first actual number. One can then back-substitute everything from i = N to i = 1
and the solution is done. This procedure is called the forward-elimination backward-substitution
method. It works very well and robustly for problems involving tridiagonal matrices.

Once this equation is solved, the qn+1
i values are found and the next time step can be made.

8.3 Diffusion equation in 2-D and 3-D: a prelude
Now let us do the same thing for a 2-D diffusion equation:

∂q

∂t
−

∂

∂x

(

D
∂q

∂x

)

−
∂

∂y

(

D
∂q

∂y

)

= b (8.29)

In discrete implicit form:

qn+1
i,j = qn

i,j +
∆tD

∆x2
(qn+1

i+1,j − 2qn+1
i,j + qn+1

i−1,j) +
∆tD

∆y2
(qn+1

i,j+1 − 2qn+1
i,j + qn+1

i,j−1) + ∆tb (8.30)

and sort this:

qn+1
i,j −

∆tD

∆x2
(qn+1

i+1,j − 2qn+1
i,j + qn+1

i−1,j) −
∆tD

∆y2
(qn+1

i,j+1 − 2qn+1
i,j + qn+1

i,j−1) = qn
i,j + ∆tb (8.31)

How to write this in a matrix form? First we have to make a 1-D vector q out of the 2-D
arrangement of variables qi,j. This can be done in the following way (here: a 4×4 grid):

q = (q1,1, q2,1, q3,1, q4,1, q1,2, q2,2, q3,2, q4,2, q1,3, q2,3, q3,3, q4,3, q1,4, q2,4, q3,4, q4,4)
T (8.32)

So for an Nx × Ny grid we get a vector q of length N = NxNy. The corresponding matrix A

will then haveN ×N components, i.e. (NxNy)2 components. Again, most of these components
will be 0, so we will want to store these matrix elements in a clever way, like the a, b, c case for
the tridiagonal case. In this way we can keep the matrix storage manageable. For a 3-D grid all
of this goes similarly, and for an Nx × Ny × Nz grid we get a vector q of length N = NxNyNz

and a matrix of (NxNyNz)2 elements, again most of which are 0. But let us stick to the 2-D case
for now.

So what is the structure of this matrix? The matrix will be partly tridiagonal, but it will have
side-bands too. See Fig.8.1.
→ Exercise: What is the location of the side bands in the matrix (i.e. how many rows or

colums offset from the true diagonal)?
For this kind of matrix the forward elimination backward substitution method does not

work. For this we need iterative solvers for sparse matrices.

8.4 Iterative solvers for sparse matrix equations
There is a large variety of iterative methods for solving sparse matrix equations. Some basic
methods are Jacobi iteration, Successive Overrelaxation (SOR), Incomplete LU factorization,
Gauss-Seidel iteration etc. These methods are not very efficient, but it turns out that in combi-
nation with other methods they still have their use.

130

Figure 8.1. Graphical representation of theAmatrix resulting from the 2-D diffusion equation.

8.4.1 Conjugate gradient methods
Here we will focus on a particular class of methods called conjugate gradient methods (again we
refer here to the book by Press et al. “Numerical Recipes”, but also to the book by Ferziger &
Peric “Computational Methods for Fluid Dynamics”). Consider the general matrix equation

Aq = b (8.33)

If and only if the matrix A is symmetric and positive definite one can devise the following
method. Define a function

f(q) =
1

2
q ·A · q − b · q (8.34)

At the point where f(q) has a minimum, q is a solution of the matrix equation. This minimum
is located where

∇f = Aq− b = 0 (8.35)

proving that indeed this minimum corresponds to the solution of the matrix equation. The trick
is now to start with an initial guess and walk toward the point where the minimum is. At each
iteration k wemake a search directionpk and we find the value of a quantityαk such that f(qk+1)
is minimized, where qk+1 is given by:

qk+1 = qk + αkpk (8.36)

So how do we determine pk? This could be done using the “steepest descent” method. This
method is guaranteed to converge, but it can converge very slowly. In particular if the minimum
lies in a very long and narrow valley. The conjugate gradientmethod is a version of this method
in which the new search direction pk+1 is chosen to be as different from all the previous ones as
possible. Let us define pk and pl too be conjugate vectors if they obey:

pk · A · pl = 0 (8.37)

i.e. they are, so to speak, orthogonal with respect to the “metric” A. In the conjugate gradient
method each new search direction is required to be conjugate to all previous ones. This choice of
pk+1 ensures that if one finds the αk+1 such that f(qk+1 + αk+1pk+1) is minimized with respect
to αk+1 it is also minimized with respect to all previous αl<k+1 and pl<k+1. THis means that if

131

one hasN = NxNyNz grid points, then this method is guaranteed to find the exact solution in at
mostN iterations. In practice, however, one does not want to store all previous search directions,
nor do the large amount of work to find a conjugate to a large number of vectors. So in practice
the number of successively conjugate search directions is taken to be a limited value, and after
that the algorithm is restarted. This does not guarantee convergence in a finite number of steps,
but still it converges relatively rapidly.

Another version of this algorithm uses another scalar function to minimize: the length of
the residual vector r. This residual is defined as:

rk = Aqk − b (8.38)

The function to minimize is then:

f(q) =
1

2
r · r =

1

2
|Aq− b|2 (8.39)

This is the minimum residual method. It works for symmetric matrices, also those which are
non-positive-definite.

The above methods work fine, but they are restricted to symmetric matrices. There are
several generalizations of this to generalize it do more general matrices. For the above mentioned
basic conjugate gradient method there is a biconjugate gradient method (BCG method) which
does not have this restriction. But it is also not clearly linked to minimizing a function.

For the minimum residual method there is a generalized version called the generalized min-
imum residualmethod (GMRES). This is a very stable method and does not have any restriction
on the matrix, except that it is not degenerate.

8.4.2 Implementation and preconditioning
The nice property of this class of methods, also called Krylov subspace methods, is that it in-
volves only multiplications of the matrix A or AT with vectors supplied by the algorithm and
the computation of inner products between two vectors supplied by the algorithm. In fact, you
can, as a user, supply your own subroutine for multiplying either A or AT with a vector that
the conjugate gradient supplies, as well as a subroutine for computing the inner product between
two vectors. This leaves all the implementation and all the time-consuming computations in
your own hands and you can figure out how to most efficiently compute these matrix-vector and
vector-vector products.

This nice property also reveals a weakness of these methods. By definition a matrix product
with a vector only propagates information from one grid point to its neighbors. So if one has an
Nx × Ny grid then one cannot hope to get a solution with fewer than max(Nx, Ny) iterations,
and generally it may take up to max(N2

x , N2
y) iterations. The reason is simply that one cell on

the left of the grid does not “feel” anything from another cell on the right side of the grid until
this information is propagated. Each iteration of the Krylov method propagates information only
a single cell, and since information may have to travel multiple times back-and-forth before a
solution is found, it can take many iterations.

More mathematically one can say that this matrix is ill conditioned. If λ1 · · ·λN are the
eigenvalues of the matrix, then the condition number κ is defined as

κ =
λmax

λmin
(8.40)

If this number is large then the matrix is ill conditioned

132

One way of improving the situation is to use preconditioning of the matrix equation by
introducing a preconditioning matrixΛ such that one solves the following equation:

ΛAΛ−1Λq = Λb (8.41)

This equation is mathematically identical to the original one, but it is numerically different. If
one can find a suitable preconditioning matrix Λ, then the convergence can be sped up much.
Ideally Λ is as closely similar asA but still easy to invert. In the Krylov methods what happens
in practice is that the algorithm will ask you to solve the equation Λy = w for y for some
given vector w. If you take Λ = 1, then this is trivial: y = w and the method reduces to the
non-preconditioned method. If, however, Λ is cleverly chosen, then you can solve the equation
each time the algorithm asks you to do so, and the method can speed up a lot. Basically what
you need to do is to find aΛ that propagates information quickly across the grid without making
it difficult to invert.

8.4.3 Libraries
It is in general not a good idea to try to program one’s own matrix equation solver. Libraries of
subroutines for doing this have been developed over decades, and it is generally a good idea to
look for an appropriate library and use that library as a “black box”. Here is a very incomplete list
of some known libraries, some of which are freeware, some of which are proprietary software:

• The subroutines associated with the book by Press et al. “Numerical Recipes in C” and/or
“Numerical Recipes in Fortran-77”.
http://www.nr.com/com/storefront.html

• SixPack: Linear solvers for Finite Volume / Finite Difference equations.
http://www.engineers.auckland.ac.nz/∼snor007/software.html

• Hypre: Scalable Linear Solvers.
https://computation.llnl.gov/casc/hypre/software.html

• PETSc: Portable, Extensible Toolkit for Scientific Computation.
http://www-unix.mcs.anl.gov/petsc/petsc-as/

But there are many more libraries available.

8.5 Incompressible fluid equations
Now let us return to the problem of very subsonic fluids. Very subsonic means in fact that one
can approximate the system as being incompressible. This means that

∇ · !u = 0 (8.42)

and the density ρ=constant. Since the density is assumed to be constant, we do not need to solve
the continuity equation anymore. But instead we get a condition on the pressure gradients. Let
us look at the momentum equation:

∂!u

∂t
= −!u ·∇!u −

1

ρ
∇P (8.43)

133

If we take the divergence of this equation, then we obtain:

∂∇ · !u
∂t

= −∇ · (!u ·∇!u) −
1

ρ
∇2P (8.44)

where we have used∇ρ = 0. If we say ∇ · !u = 0 then we obtain

∇2P = −ρ∇ · (!u ·∇!u) (8.45)

In index notation, and with use again of∇ · !u = 0 we obtain

∇k∇kP = −ρ∇kul∇luk (8.46)

This means that the condition of incompressibility creates a Poisson equation for the pressure.
In numerical form this becomes:

∂

∂xi

(

∂P

∂xi

)

= −
∂

∂xi

[

∂(ρuiuj)

∂xj

]

(8.47)

How to solve this? One way to do so is to see the similarity between the Poisson equation
in 2-D and stationary solutions of the 2-D time-dependent diffusion equation. So one can use
the same methods as above, but then taking ∆t → ∞. Or one can keep ∆t finite or even small
enough to do explicit time integration until a steady state is reached. This is, however, very CPU
time consuming.

8.5.1 Boundary conditions
Suppose we have flow in a restricted volume (a pipe or a river), then the boundary conditions are
such that !u ·!n = 0, where !n is the normal to the surface. The pressure gradient must be such that
this remains true after one time step. Multiplying the momentum equation with !n gives:

∂!n · !u
∂t

= −!n · (!u ·∇!u) −
1

ρ
!n ·∇P (8.48)

which reduces to
1

ρ
nk∇kP = −!nkul∇luk (8.49)

which can be implemented as boundary condition.

8.5.2 Numerical issues
In solving the Poisson equation for the pressure one must make sure that one uses the same
numerical methods for computing the source term of this equation as one uses for the update of
the velocities. If one does not do this, the zero divergence cannot be guaranteed. Also one must
start from a velocity field that is already divergence free, otherwise the solution of the Poisson
equation will not help.

