
Chapter 9

Modeling solids: Finite Element Methods

NOTE: I found errors in some of the equations for the shear stress. I will correct them
later.

The static and time-dependent modeling of solids is different from the modeling of fluids,
but there are also a number of similarities, both physically and technically. In Chapter 8 we have
seen that when some of the signals (typically sound waves) move extremely fast compared to
the signals we are interested in, and if these fast signals damp out quickly enough, then implicit
integrationmethods are extremely powerful. They allow us to ignore the fast signals and compute
the slower motions without excessive computational effort. In the limit of semi-infinite signal
propagation (e.g. incompressible fluids) such implicit methods are unavoidable, as information
from one side of the computational domain influences the motion on the other side. In other
words: everything communicates instantly with everything, and this has to be represented in the
method of modeling, typically involving matrices. We will find such matrix methods also very
useful for the modeling of solids.

The mechanics of solids has many similarities to fluid mechanics. Also here one has sound
waves, often propagating at very high speed compared to the motion we are interested in. But
there is also a major difference: in solids the various solid elements are linked to their neighbors:
if a red patch of material lies next to a blue patch, then these two patches will remain neighbors
no matter how much the solid is deformed and moved, until the solid breaks. If the solid breaks,
then the mechanics suddenly changes drastically, as then the two separated patches suddenly no
longer communicate forces. But before the material breaks, neighboring patches stay neighbors
and communicate forces among themselves. In fluids, on the other hand, patches of fluid change
neighbors all the time, and forces are exchanged simply with the neighboring fluid elements at
that time, which may be different at a future time.

There is also another difference between solids and fluids: the way that forces are ex-
changed. Pressure forces are exchanged in the same way for both solids and fluids. But shear
stresses are different. For a viscous fluid, shear stress is proportional to gradients in the fluid
motion. This means, if the fluid stands still, then the shear stress is zero. In solids, on the other
hand, shear stresses are caused by deformation, i.e. by the difference of the positions of patches
of solid from their original position. In solids, stress can be non-zero even if the solid is at rest.
And the stress is not dependent on gradients in the velocity of the patches, only the location of
the patches.

Yet, we will see that several of the methods we have used so far have also application to
solids, albeit in a different form.
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Figure 9.1. A picogram showing how the internal material coordinates (x, y, z) and the spatial
coordinates (X,Y,Z) relate to each other in case of a material deformation.
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9.1 Behavior of solids: strain and stress
9.1.1 Modeling a solid using displacement vectors
Let us find a method for modeling a solid block of material with size Lx × Ly × Lz. We as-
sume that at rest the block of solid does not have any internal stresses. Let us define a cartesian
coordinate system (X, Y, Z). We can now give a label to each point in the block with the coor-
dinates at which that point is. We use lower-case letters for that: (x, y, z). The reason why we
use lower case letters for labeling the points in the solid, while using upper case letters for the
spatial coordinates is because only in the relaxed case the two are the same, while in the case of
deformation, displacement or rotation, the two are different (see Fig.9.1).

In general, we can assign a spatial location (X, Y, Z) to each element of the block (x, y, z).
So initially, in the relaxed state, we have

X(x, y, z) = x (9.1)
Y (x, y, z) = y (9.2)
Z(x, y, z) = z (9.3)

But if we translate the block by a vector (∆x, ∆y, ∆z), then we obtain:

X(x, y, z) = x + ∆x (9.4)
Y (x, y, z) = y + ∆y (9.5)
Z(x, y, z) = z + ∆z (9.6)
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Rotation of the block around the z-axis by an angle θ would give

X(x, y, z) = x cos θ − y sin θ (9.7)
Y (x, y, z) = x sin θ + y cos θ (9.8)
Z(x, y, z) = z (9.9)

Both translation and rotation do not induce any stresses in the block. For that, you need to deform
the block. For instance, a bending of the block in y-direction could look like

X(x, y, z) = x (9.10)
Y (x, y, z) = y + ax2 (9.11)
Z(x, y, z) = z (9.12)

where a gives the degree of bending.
For mathematical convenience we introduce the displacement vector field

δx(x, y, z) = X(x, y, z) − x (9.13)
δy(x, y, z) = Y (x, y, z) − y (9.14)
δz(x, y, z) = Z(x, y, z) − z (9.15)

It is with these displacement vectors that we will do our calculations from now on.

9.1.2 Deformation of solids: strain
A non-zero displacement does not necessarily mean that the object is deformed. At every posi-
tion (x, y, z) in the object we can calculate the strain tensor

εkl =
1

2
(∂kδl + ∂lδk) (9.16)

The strain tensor tells how deformed the object it. A zero strain tensor means that there is no
deformation in the material at that position. Note that the strain does not yet tell anything about
the internal forces in the material. As we shall see below, strain induces stresses, but which
stresses it induces depends on material properties.

One can also define a rotation tensor

Ωkl =
1

2
(∂kδl − ∂lδk) (9.17)

This tensor merely gives the orientation of the local piece of object with respect to the original
coordinate system (X, Y, Z). The gradient of the displacement vector can be written as

∂kδl = εkl + Ωkl (9.18)

Let us give an example in 2-D:

ε =

(

∂xX − 1 1
2(∂xY + ∂yX)

1
2(∂xY + ∂yX) ∂yY − 1

)

(9.19)

and
Ω =

(

0 −1
2(∂xY − ∂yX)

1
2(∂xY − ∂yX) 0

)

(9.20)

In the above example of the strain tensor the diagonal elements give the stretching or compression
deformation. The off-diagonal elements give the shear strain.
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Figure 9.2. Stress response regimes of a solid material to an imposed strain.

9.1.3 Material reaction to strain: stress
Due to the internal structure of solids, a strain imposed on a solid body will induce internal
stresses. A stress is like a force per unit surface. We will denote the stress as a tensor σij . In the
linear regime, i.e. for small enough strain εij, one can write

σij = Cijklεkl (9.21)

where Cijkl is a rank four tensor which contains the material properties such as stiffness and
shear strength. This linear relation only holds for strains that are small enough. As an example
consider a block of granite: it is extremely strong (inducing very large σij for very modest εkl),
but if stretched to more than a percent or so, it will break. Most materials have a linear response to
small strains (the so-called “elastic” regime), then beyond a certain strain threshold the respons
weakens (the so-called “plastic” regime), and then beyond an even larger strain threshold the
material will break (see Fig. 9.2).

9.1.4 Stress-strain relation for isotropically elastic material
For simple elastic materials with no internal preferential directions and isotropic response,Hooke’s
law holds for small enough strains:

ε11 =
1

E
σ11 (9.22)

where E is called Young’s modulus. In reaction to a stretch in e.g. 1-direction (i.e. x-direction)
the material counters with a force that tries to counteract this stretch. One can also invert this
statement: when a given force per unit surface σ11 acts in x-direction on a block of material,
then in response the block will deform according to ε11 = σ11/E. Typically a material will also
deform in the perpendicular directions:

ε22 = ε33 = −νε11 = −
ν

E
σ11 (9.23)

When we stretch a material in x-direction, it will typically get thinner in y and z direction. The
parameter ν is the Poisson ratio. If it is 0.5, the material is incompressible, i.e. it maintains a
constant density. If it is negative, the material expands in y and z direction when it is stretched in
x-direction. There are materials that have this pecular behavior, but it is rare. For most materials
it is between 0 and 0.5. For all materials it is between -1 and 0.5. A few examples: most metals
have ν ∼ 0.3 · · ·0.4, concrete has ν $ 0.2 and cork has ν $ 0.
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In general one can thus write:




ε11

ε22

ε33



 =
1

E





1 −ν −ν
−ν 1 −ν
−ν −ν 1









σ11

σ22

σ33



 (9.24)

For the shear stress-strain relation one has simpler expressions:

ε12 = µσ12, ε13 = µσ13, ε23 = µσ23 (9.25)

where µ is the shear modulus. For perfectly elastic materials one has:

µ =
E

2(1 + ν)
(9.26)

In matrix notation we can thus summarize:
















ε11

ε22

ε33

ε12

ε13

ε23

















=
1

E

















1/E −ν/E −ν/E 0 0 0
−ν/E 1/E −ν/E 0 0 0
−ν/E −ν/E 1/E 0 0 0

0 0 0 1/2µ 0 0
0 0 0 0 1/2µ 0
0 0 0 0 0 1/2µ

































σ11

σ22

σ33

σ12

σ13

σ23

















(9.27)

The inverse of this relation is:
















σ11

σ22

σ33

σ12

σ13

σ23

















=
1

E

















λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ

































ε11

ε22

ε33

ε12

ε13

ε23

















(9.28)

with
λ =

νE

(1 + ν)(1 − 2ν)
(9.29)

9.1.5 Equations of motion
With the above knowledge of material behavior, we can now write down the time-dependent
equations of motions for a solid. Let us define the following velocity components:

u =
∂δx

∂t
, v =

∂δy

∂t
, w =

∂δz

∂t
(9.30)

The complete set of equations of motion is then:

∂tδx = u (9.31)
∂tδy = v (9.32)
∂tδz = w (9.33)
ρ∂tu = ∂xσ11 + ∂yσ12 + ∂zσ13 (9.34)
ρ∂tv = ∂xσ21 + ∂yσ22 + ∂zσ23 (9.35)
ρ∂tw = ∂xσ31 + ∂yσ32 + ∂zσ33 (9.36)
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At each time step the stress tensor σ must be determined from the strain tensor ε, which fol-
lows from the derivatives of the displacement vector (δx, δy, δz). The six variables to solve are:
δx, δy, δz, u, v, w.

We could use implicit methods for solving this set of equations. But if we instead want to
use the methods we derived in earlier chapters for hyperbolic sets of equations (which the above
are), then we encounter a problem. Although the above equations are hyperbolic, they are second
order. So it is not possible to use methods derived for advection equations to these equations.

To make the equations first order one can switch from solving for the displacement vector
(δx, δy, δz) to solving for the strain tensor ε. We thus obtain:

∂tε11 = ∂xu (9.37)
∂tε22 = ∂yv (9.38)
∂tε33 = ∂zw (9.39)
∂tε12 = 1

2(∂xv + ∂yu) (9.40)
∂tε13 = 1

2(∂xw + ∂zu) (9.41)
∂tε23 = 1

2(∂yw + ∂zv) (9.42)
ρ∂tu = ∂xσ11 + ∂yσ12 + ∂zσ13 (9.43)
ρ∂tv = ∂xσ21 + ∂yσ22 + ∂zσ23 (9.44)
ρ∂tw = ∂xσ31 + ∂yσ32 + ∂zσ33 (9.45)

This is a linear set of equations which one can solve using the techniques of Chapters 2, 3 and 4.
Note that we now have 3 more equations and 3 more variables, yielding in total 9 equations

for 9 variables. In principle we only have 6 independent variables, 3 for space and 3 for veloc-
ity. The 6 spatial variables of the strain tensor are therefore not independent. This means that
strictly speaking, at each time step of the time-dependent integration we should assure that the 6
components of the stress tensor are still self-consistent. In fact, in the end we wish to see what
is the shape of an object, so we must then reconstruct the displacement vector (δx, δy, δz) from
the components of the strain tensor, ε11, ε22, ε33, ε12, ε13 and ε23. If this is done at each time
step, then it is guaranteed that the equations remain self-consistent. More details on how to solve
these equations can be found in the book by LeVeque.

9.2 Finite Element Methods (FEM) for solids
The equations and methods described in Section 9.1 showed the basic principles of how solids
are modeled. But the method for solving the motion and deformation of solid objects in that
section is rarely used, because it can not naturally treat complex structures. In practice engineers
want to be able to solve for the motion or the static structure of complex objects such as bridges,
houses, ships, cars, airplanes etc. What they then often use is a “Finite Element Method” (FEM).
With this method the object can be constructed out of individual blocks of varying shapes, glued
together to form a full object. See Fig.9.3 for the most basic 1-D, 2-D and 3-D finite elements.
This does not mean that it would not be possible to introduce more complex finite elements. On
the contrary: one can certainly also include squares, cubes etc. But the advantage of rods, trian-
gles and tetraeders is that in those simple finite elements the stress tensor is constant throughout
the element (at least in the linear regime).

For the 1-D finite element (the rod) we have two displacement vectors (see Fig.9.3). If
we apply this finite element to 1-D space, each displacement vector contains one number. We
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Figure 9.3. The most basic finite elements: 1-D rod, 2-D triangle and 3-D tetraeder.

Figure 9.4. Illustration of displacements and resulting forces on the nodes of a triangular finite
element in 2-D space.

have one translational degree of freedom, so this leaves one variable describing the deformation
(strain). When applying it do 3-D space, each displacement vector has 3 components, yielding
6 variables. Three of those take care of translational freedom, two for rotational freedom. This
leaves again one variable describing the deformation.

For the 2-D finite element (the triangle) we have three displacement vectors (see Fig.9.3). If
we apply this finite element to 2-D space, each displacement vector contains two numbers. We
have two translational degrees of freedom and one rotational degree of freedom, so this leaves 3
variables describing the deformation (strain). When applying it do 3-D space, each displacement
vector has 3 components, yielding 9 variables. Three of those take care of translational freedom,
three for rotational freedom. This leaves again 3 variables describing the deformation.

For the 3-D finite element (the tetraeder) we have four displacement vectors (see Fig.9.3).
Each displacement vector has 3 components, yielding 12 variables. Three of those take care
of translational freedom, three for rotational freedom. This leaves 6 variables describing the
deformation.

9.2.1 Direct stiffness method for statics
A method for computing the equilibrium shape of objects under stress is the Direct Stiffness
Method (DSM). Let us discuss this in a 2-D example, and let us focus on a single triangular
finite element (see Fig. 9.4). We have displacements of the nodes A, B and C, which we write
as δ1

A, δ2
B for node A, and similar for B and C. These displacements induce a strain inside the

triangle, which induces a stress. If this triangle is glued to other finite elements or to a boundary,
then we must find a way to communicate these stresses to these other elements in terms of forces
that act on them. There are various ways of doing this, but the easiest is to assume that each
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element only communicates with neihboring elements via forces on their common nodes (in this
case A, B or C). We write these forces as δ1

A, δ2
B for node A, and similar for B and C. For static

problems, where we assume that all motions vanish, we can already know that the net sum of all
the forces must be zero, eliminating 2 of the 6 independent variables (remember, we assume here
to be in 2-D). Also, no net torque must act on the finite element, eliminating yet another variable.
So of the 6 force variables, only 3 are independent. Indeed, of the 6 displacement variables, also
only 3 are related to the deformation, so that fits.

We now have to find a way to convert the stress tensor σij into these forces. The entire
process, starting with displacements, via strain, stress and ending with nodal forces can be sum-
marized using the co-called stiffness matrix:

















f 1
A

f 2
A

f 1
B

f 2
B

f 1
C

f 2
C

















=

















K11
AA K12

AA K11
AB K12

AB K11
AC K12

AC

K21
AA K22

AA K21
AB K22

AB K21
AC K22

AC

K11
BA K12

BA K11
BB K12

BB K11
BC K12

BC

K21
BA K22

BA K21
BB K22

BB K21
BC K22

BC

K11
CA K12

CA K11
CB K12

CB K11
CC K12

CC

K21
CA K22

CA K21
CB K22

CB K21
CC K22

CC

































δ1
A

δ2
A

δ1
B

δ2
B

δ1
C

δ2
C

















(9.46)

Since translation and rotation give zero force, the matrix must have eigenvectors with zero eigen-
value, or in other words: it has a zero determinant.

9.2.2 DSM: A 1-D finite element
Let us now make an example, going to even lower dimension: 1-D. If we have a 1-D rod in 1-D
space, then we have two displacement variables: δA and δB , only the combination of which is an
independent variable because we are not interested in translation. We then have

(

fA

fB

)

=

(

KAA KAB

KBA KBB

) (

δA

δB

)

= K

(

1 −1
−1 1

) (

δA

δB

)

(9.47)

whereK is the stiffness of the cylindrical rod:
K = Eπr2/L (9.48)

where E is Young’s modulus, r is the radius of the cylinder and L its length.

9.2.3 DSM: Constructing a triangle with three rods
Using the simple rod model above we can now start constructing a simple triangle from three
individual rods and compute the stiffness matrix for that triangle. See Fig.9.5 for the geometry.
We leave it as an exercise for the reader to show that we obtain
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
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
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

f 1
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f 2
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f 1
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f 2
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f 2
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















= K


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


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






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√
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


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
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




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




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B
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B
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C
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C


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











(9.49)

with againK = Eπr2/L with L defined in Fig.9.5.
The result can be interpreted in two ways: in one sense we have constructed a small object

from three rods. We could add more rods and create more complex objects. In another sense we
have created a model for a 2-D triangular finite element. However, this model is just one model,
and is not a generally valid model for triangular finite elements.
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Figure 9.5. The geometry of our simple triangle constructed from three rods.

Figure 9.6. The static problem we wish to solve. Left: before application of force. Right: after
application of force.

9.2.4 DSM: Solving for the shape of a construction made out of rods
Let us now demonstrate how we can use the above stiffness matrix formulation to solve an actual
problem. Let us assume that we install the triangle against a wall in the way depicted in Fig.9.6.
Point A is fixed, point C is allowed to move up and down, but not left or right and point B is
completely free. A force fext is applied downward on point B. We now wish to solve for the
displacements of these points. The stiffness equation becomes:

K
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0 1 0 0 0 0
−1 0 1 + 1

2
√

2
− 1

2
√

2
− 1

2
√

2
1

2
√

2

0 0 − 1
2
√

2
1

2
√

2
1

2
√

2
− 1

2
√

2

0 0 0 0 1 0
0 −1 1

2
√

2
− 1

2
√

2
− 1

2
√

2
1 + 1

2
√

2



































δ1
A

δ2
A

δ1
B

δ2
B

δ1
C

δ2
C

















=

















0
0
0

−fext

0
0
















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where we have replaced rows 1,2 and 5 of the stiffness matrix of Eq.(9.49) with the condition
that δ1

A = 0, δ2
A = 0 and δ1

C = 0, which are the boundary conditions of the problem. Note that
such boundary conditions are essential, because otherwise the matrix has zero determinant and
the problem is ill-determined. By replacing these three lines with the boundary conditions the
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problem now becomes solvable. Note that we can simplify the above matrix equation as:
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K




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0



 (9.51)

The solution is:

δ1
B = −

fext

K
(9.52)

δ2
C = −

fext

K
(9.53)

δ2
B = −2(1 +

√
2)

fext

K
(9.54)

→ Exercise: Write a computer program (for instance in IDL) that solves for the static structure
of a simple bridge made out of rods, and plot the result for different values ofK.


