Continuity Equation

Problem sheet 5

26/05/2009

Flux-Limiter

Aim of this exercise sheet is the improvment of the numerical Doner-Cell scheme for the solution of the continuity equation via high-resolution Flux-Limiters.

1. Extend in your advection-code the calculation of the flux over the interfaces by a second-order corrector term:

$$F_{i-1/2} = \rho_{i-1} \max(v_{i-1/2}, 0) + \rho_{i} \min(v_{i-1/2}, 0) + \frac{1}{2} |v_{i-1/2}| \left(1 - \frac{\Delta t}{\Delta x} |v_{i-1/2}|\right) \delta_{i-1/2}^{n}$$

With $\delta_{i-1/2}^n = \rho_i^n - \rho_{i-1}^n$ this would give the Lax-Wendroff method.

2. We want to change this Lax-Wendroff flux by multiplying an arbitrary flux-limiter function $\Phi(\theta)$:

$$\delta_{i-1/2}^n = \Phi(\theta)_{i-1/2} (\rho_i^n - \rho_{i-1}^n)$$

which depends on the "smoothness" θ of the advected data in the upwind direction:

$$\theta_{i-1/2} = \frac{(\rho_{i-1}^n - \rho_{i-2}^n) \max(v_{i-1/2}, 0) + (\rho_{i+1}^n - \rho_i^n) \min(v_{i-1/2}, 0)}{(\rho_i^n - \rho_{i-1}^n) v_{i-1/2}}$$

3. Implement the following flux-limiters $\Phi(\theta)$:

Implement the following flux-finiters $\Psi(\theta)$:	
$\operatorname{Met}\operatorname{hod}$	$\Phi(heta)$
Linear Methods:	
Upwind	0
Lax-Wendroff	1
Beam-Warming	heta
Fromm	$\frac{1}{2}(1+\theta)$
High resolution limiters:	2
van Leer	$\frac{\theta + \theta }{1 + \theta }$
Monoticed Center difference (MC)	$\max(0, \min(2, \frac{1}{2}(1+\theta), 2\theta))$
Superbee	$\max(0, \min(1, 2\theta), \min(2, \theta))$