Isothermal Hydrodynamics

Problem sheet 6

2/06/2009

Isothermal Shock Tube

Now we learned, how to advect a function over a grid. So we nearly gathered all the knowledge to build up the hydro code. Aim of this exercise sheet is the expansion from the 1D-advection code to a full (isothermal) 1D-Hydro-Solver.

- 1. Write down the 1D equations for isothermal hydrodynamics.
- 2. Expand your code: Calculate in each timestep the isothermal pressure distribution. Use isothermal sound speed $c_s = 1$.
- 3. If we want to consider the time evolution of the velocity distribution, the corresponding timestep (Courant-Friedrichs-Lewy condition, CFL) changes with time, too.

Expand your code: Calculate at the beginning of each iteration the new possible timestep. Use a CFL factor of 0.5 and consider also the signal velocity c_s .

- 4. Solve the continuity equation numerically with flux limiters learned from problem sheet #5.
- 5. To solve the momentum equation numerically, we'll split the equation into two steps:

$$\partial_t(\rho v) = -\partial_x[(\rho v)v]$$
 (transport step)
 $\partial_t(\rho v) = -\partial_x P$ (source step)

The first one describes the advection of the density flux ρv and is an exact copy of the continuity equation. The second one describes the additionally acting hydrodynamic pressure force.

Expand your code:

- (a) Apply the flux limiter learned from problem sheet #5 when transporting the momentum.
- (b) Solve the pressure force equation after the above described velocity transport during a second velocity update.
- 6. Test your final code with the isothermal shock tube problem: 100 physical grid cells (+boundaries), $\Delta x = 1$, $c_s(x,t) = 1$, closed boundaries.

$$\begin{array}{lll} \rho(x,t=0) &=& 2\Theta(50-x)+1 \\ v(x,t=0) &=& 0, \end{array}$$

where

$$\Theta(x) = \begin{cases} 0 & x \le 0\\ 1 & x > 0 \end{cases}.$$

Integrate up to t = 30.