
10 Point explosion

The sudden release of a large amount of energy E into a background fluid of density
ρ1 creates a strong explosion, characterized by a strong shock wave (a ‘blast wave’)
emanating from the point where the energy was released. Such explosions occur for
example in astrophysics in the form of supernova explosions.

But how fast will the shock wave travel and what is left behind? The problem of
the point explosion is also known as Sedov-Taylor explosion, after the two scientists
that first solved it by analytic (and in part numerical) means in the context of
atomic bomb explosions. Today, the problem can provide a useful test to validate
a hydrodynamical numerical scheme, because an analytic solution for it can be
computed which can then be compared to numerical results. Also, the problem
serves as a good example to demonstrate the power of dimensional analysis and
scale-free solutions.

10.1 A rough estimate

Let’s begin by deriving an order of magnitude estimate for the radius R(t) of the
shock as a function of time. The mass of the swept up material is of order M(t) ∼
ρ1R

3(t). The fluid velocity behind the shock will be of order the mean radial velocity
of the shock, v(t) ∼ R(t)/t. We further expect

Ekin ∼
1

2
Mv2 ∼ ρ1R

3R
2

t2
= ρ1

R5

t2
(10.1)

What about the thermal energy in the bubble created by the explosion? This
should be of order

Etherm ∼
3

2
PV (10.2)
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where P is the postshock pressure. To find this pressure, we need to recall the jump
conditions across a shock. If the shock moves to the right with velocity v1 = v(t),
then in the rest-frame of the shock the background gas streams with velocity v1 to
the left, and comes out of the shock with a higher density ρ2, higher pressure P2,
and with a lower velocity v2.

The Rankine-Hugonoit relations for the shock tell us

ρ1
ρ2

=
v2
v1

=
γ − 1

γ + 1
+

2

(γ + 1)M2
(10.3)

where
M =

v1
c1

(10.4)

is the Mach number of the shock. For a strong explosion, the sound-speed of the
background medium is negligibly small, so that the Mach number will tend to infinity
in this limit. For the pressure, the Rankine-Hugonoit relation is

P2

P1

=
2γM2

γ + 1
− γ − 1

γ + 1
(10.5)

As the background pressure is P1 = ρ1c
2
1/γ, we then obtain in the limit of a strong

shock:

P2 '
2ρ1v

2
1

γ + 1
(10.6)

With this postshock pressure, we can now estimate the thermal energy in the shocked
bubble:

Etherm ∼ P2R
3 ∼ ρ1v

2
1R

3 ∼ ρ1
R5

t2
(10.7)

This suggests that the thermal energy is of the same order as the kinetic energy,
and scales in the same fashion with time. Hence also for the total energy E, which
is a conserved quantity, we expect

E = Ekin + Etherm ∼ ρ1
R5

t2
(10.8)

Solving for the radius R(t), we get the expected dependence

R(t) ∝
(
E t2

ρ1

) 1
5

(10.9)
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10.1.1 Dimensional analysis

Another powerful approach to make a similar kind of estimate is through dimension-
less analysis. If we assume the postshock pressure is always much larger than the
preshock pressure, P2 � P1, then the value of P1 plays no role. The only parameters
of the problem are then E and ρ1, and all quantities appearing in the solution can
only be a combination of E, ρ1, and t. We can hence use dimensional analysis to
identify some of the expected dependencies.

The dimensions of the principal quantities are:

[ρ1] =
M

L3
(10.10)

[E] = M
L2

T2
(10.11)

[t] = T (10.12)

The only quantity of dimension length we can construct from this is[(
Et2

ρ1

) 1
5

]
= L (10.13)

Hence any radius relevant for the problem, in particular the shock radius, must
depend on these variables through this combination. This also motivates us to
define a similarity variable η as

η ≡ r

(Et2/ρ1)1/5
(10.14)

At fixed time, this is simply a scaled radial coordinate. The shock will be at this
time at some position ηs in this variable. Now, at a different time, the shock will
be at the same value of ηs. The ‘self-similar’ solution becomes stationary in the
appropriately scaled variables. For the shock position we can hence write

R(t) = ηs

(
Et2

ρ1

)1/5

∝ t1/5, (10.15)

where ηs is a constant of order unity. The shock velocity follows via time differenti-
ation as

vs(t) =
dR

dt
=

2

5

R(t)

t
∝ t−3/5 (10.16)

10.1.2 Obtaining the exact solution

In order to obtain the numerical value of ηs, and the detailed structure of the interior
solution in the explosion bubble, we can try to further exploit the scale-similarity
of the solution (apart from assuming spherical symmetry, of course). We first recall
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that outside of the shock, the solution is v = 0, ρ = ρ1, and P = P1 ' 0. Inside the
shock, for 0 < r < R(t), we can make the ansatz

ρ(r, t) = ρ2A(η) (10.17)

because all physical quantities inside the shock can only depend on η. In this ansatz,
we have already incorporated the postshock density

ρ2 =
γ + 1

γ − 1
ρ1, (10.18)

of a strong shock, so that we know A(ηs) = 1. Similarly, we can make the ansatz

P (r, t) = P2

(
η

ηs

)2

B(η), (10.19)

so that at the shock we get B(ηs) = 1. The extra factor (η/ηs)
2 is here introduced for

convenience later on, but it could also be absorbed into a redefinition of B. Finally,
we can adopt

v(r, t) = vlab2

(
η

ηs

)
C(η) (10.20)

to describe the run of the radial velocity, with C(ηs) = 1. We need to be a bit
careful about the meaning of vlab2 , which is not the postshock velocity v2 in the
shock’s restframe that we considered earlier. Rather, vlab2 is relative to the restframe
of the background medium (the lab frame). If the shock moves with vs to the right,
we have

vlab1 = vs − v1 (10.21)

vlab2 = vs − v2 (10.22)

where positive v1 and v2 describe motion to the left, as in our sketch. Since vlab1 = 0,
it follows v1 = vs, and from the jump conditions we have

vlab2 = v1 − v1
γ − 1

γ + 1
=

2

γ + 1
vs (10.23)

We have now written ρ(r, t), P (r, t) and v(r, t) in self-similar form in terms of three
functions A(η), B(η) and C(η). To determine these functions, we use the Euler
equations in spherical symmetry:

∂

∂t
+

1

r2
∂

∂r
(r2vρ) = 0 (10.24)

∂v

∂t
+ v

∂v

∂r
= −1

ρ

∂P

∂r
(10.25)

∂

∂t

[
ρ(u+

1

2
v2)

]
+

1

r2
∂

∂r

[
r2ρv(u+

P

ρ
+

1

2
v2)

]
= 0 (10.26)
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This is augmented with the ideal gas equation of state,

P = (γ − 1)ρu. (10.27)

We can substitute into these equations our three self-similar ansatz functions. When-
ever the thermal energy appears, it can be replaced through a combination of pres-
sure and density, u = P/[(γ − 1)ρ].

In addition, we also want to carry out a change of variables, from (r, t) to (η, t).
This can be accomplished by noting that:

∂

∂t

∣∣∣∣
r

=

(
∂η

∂t

)
r

∂

∂η

∣∣∣∣
t

+

(
∂t

∂t

)
r

∂

∂t

∣∣∣∣
η

= −2η

5t

∂

∂η

∣∣∣∣
t

+
∂

∂t

∣∣∣∣
η

(10.28)

∂

∂r

∣∣∣∣
t

=

(
∂η

∂r

)
t

∂

∂η

∣∣∣∣
t

+

(
∂t

∂r

)
t

∂

∂t

∣∣∣∣
η

=
η

r

∂

∂η

∣∣∣∣
t

(10.29)

Using these relations and our ansatz substitutions in the Euler equations leads to
a set of coupled ordinary differential equations in η. From the mass conservation
equation, we obtain

−ηdA

dη
+

2

γ + 1

d

dη
(ηAC) +

4

γ + 1
AC = 0 (10.30)

Similarly, one gets from the momentum equation

−C − 2

5
η

dC

dη
+

4

5(γ + 1)

(
C2 + Cη

dC

dη

)
= −2

5

γ − 1

γ + 1

1

A

(
2B + η

dB

dη

)
(10.31)

and from the energy equation:

−2(B+AC2)−2

5
η

d

dη
(B+AC2)+

4

5(γ + 1)

(
5C(γB + AC2) + η

d

dη

[
C(γB + AC2)

])
= 0

(10.32)
The equations (10.30), (10.31), and (10.32) are three 1st order, non-linear, coupled
differential equations for the functions A(η), B(η) and C(η). They can in principle
be easily numerically integrated from the point A(ηs) = B(ηs) = C(ηs) = 1 to η = 0.
There is only one catch here – we don’t actually know the starting value ηs yet!

If we simply guess a value for ηs, we can carry out the integration of the three
functions and will get some kind of solution. The trouble is, another guess will also
give us a solution, but a different one. However, for the right solution, an additional
constraint must hold. The total energy in the solution must be equal to the total
energy E released by the explosion. This corresponds to the constraint∫ R(t)

0

(
P

γ − 1
+

1

2
ρv2
)

4πr2dr = E. (10.33)

Inserting our self-similar ansatz, this becomes

32π

25(γ2 − 1)

∫ ηs

0

(B + AC2)η4 dη = 1 (10.34)

The solution strategy is therefore as follows:
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1. Guess a value for ηs.

2. Calculate a numerical solution for A(η), B(η) and C(η) based on equations
(10.30), (10.31), and (10.32).

3. Check how well equation (10.34) integrates to 1. Adjust ηs accordingly and
repeat until convergence.

Sedov actually managed to make considerably further progress in analytically solving
these equations, deriving algebraic expressions for the shapes of the functions A, B
and C. But even in this approach, there is however still one numerical integration
left that is needed to determine ηs.

10.2 Structure of the solution

For a γ = 5/3 gas, ηs is given by ηs ' 1.15. The density structure described by A(η)
at time t = 0.4 for an explosion with energy E = 1 in a cold background medium
with unit density ρ = 1 looks as follows:
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We see that a large part of the mass in the bubble is indeed swept up close to the
shock, with the density approaching zero at the very center. Interestingly, it turn
out that the pressure is almost constant in the bubble; it drops slightly from the
post-shock value and is then almost constant. The velocity profile on the other is
approximately rising linearly from the explosion site to the edge of the shock.
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