
9 Fluid Instabilities

9.1 Stability of a shear flow

In many situations, gaseous flows can be subject to fluid instabilities in which small
perturbations can rapidly flow, thereby tapping a source of free energy. An impor-
tant example for this are Kelvin-Helmholtz and Rayleigh-Taylor instabilities, which
we discuss in this chapter.

We consider a flow in the x-direction, which in the lower half-space z < 0 has
velocity U1 and density ρ1, whereas in the upper half-space the gas streams with U2

and has density ρ2. In addition there can be a homogeneous gravitational field g
pointing into the negative z-direction.

Let us assume the flow can, at least approximately, be treated as an incompressible
potential flow. Let the velocity field in the upper and lower halves be given by

upper half: v2 = ∇Φ2 for z > 0 (9.1)

lower half: v1 = ∇Φ1 for z < 0 (9.2)

The equation of motion for an incompressible gas with constant density can be
written as

∂v

∂t
+ (v · ∇)v = g −∇

(
P

ρ

)
. (9.3)

If we use the identity (v · ∇)v = ∇v2/2−∇×v, together with the assumption of a
potential flow v = ∇Φ (and hence ∇×v = 0), we can write the equation of motion
as

∇∂Φ

∂t
+∇

(
1

2
v2

)
− g +∇

(
P

ρ

)
= 0 (9.4)
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Writing the gravitational acceleration as g = −gêz, this implies

∂Φ

∂t
+

(
1

2
v2

)
+ gz +

P

ρ
= const. (9.5)

which is Bernoulli’s theorem, a useful result that we will exploit later on.
We now assume for the velocity potentials in the upper and lower half

Φ1 = U1 x+ φ1 (9.6)

Φ2 = U2 x+ φ2 (9.7)

where φ1 and φ2 are infinitesimal perturbations. Note that these must fulfill ∇2φ1 =
0 and ∇2φ2 = 0 because the density is supposed to be constant in each of the two
regions. Let us further introduce a function ξ(x, t) = z that describes the z-location
of the interface. The total time derivative of this equation hence describes the
velocity of the interface in the z-direction. This must match the fluid velocities in
the z direction of the two phases, yielding for example for the 1-side:

∂ξ

∂x

∂Φ1

∂x
+
∂ξ

∂t
=
∂Φ1

∂z
. (9.8)

This gives first
∂ξ

∂t
+
∂ξ

∂x

(
U1 +

∂φ1

∂x

)
=
∂φ1

∂z
. (9.9)

The second term in brackets on the left side can be dropped to leading order. The
same condition also holds for the other phase, hence we obtain the two equations:

∂ξ

∂t
+
∂ξ

∂x
U1 =

∂φ1

∂z
, (9.10)

∂ξ

∂t
+
∂ξ

∂x
U2 =

∂φ2

∂z
. (9.11)

We can now relate the perturbed interface to the unperturbed state via the Bernoulli
equation. For example, for phase 1, we can write

∂φ1

∂t
+

1

2
(U1 +

∂φ1

∂x
)2 + gξ +

P1

ρ1
=

1

2
U2
1 +

P

ρ1
, (9.12)

where the left hand side is the perturbed state, the right hand side is the unperturbed
state, with the initial pressure P . An analogous equation can also be written down
for phase 2, with an equal initial pressure P . In addition, the pressures P1 and P2

must be equal. Equating the two pressures from the two Bernoulli equations and
keeping only leading order terms leads to

ρ1

(
∂φ1

∂t
+ U1

∂φ1

∂x
+ gξ

)
= ρ2

(
∂φ2

∂t
+ U2

∂φ2

∂x
+ gξ

)
. (9.13)
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9.2 Rayleigh-Taylor instability

We now seek solutions for the three functions φ1, φ2 and ξ, fulfilling the three
equations (9.10), (9.11) and (9.13). To this end we make an eigenmode analysis.
Consider the ansatz

φ1 = φ1(z) exp[i(kx− ωt)] (9.14)

which respects the symmetry of the problem. Because φ1 fulfills the Laplace equa-
tion, we get

∂2φ1

∂z2
= k2 φ1, (9.15)

which has solutions φ1(z) ∝ exp(kz) and φ1(z) ∝ exp(−kz). However, the latter
solution can be discarded because of boundary conditions, since for z → −∞ we
need to have an unperturbed state with φ1 → 0. In a similar way, we can make an
ansatz for φ2 and conclude that its z-dependence can only go as φ2(z) ∝ exp(−kz).
This therefore leads to the following three equations for a single Fourier mode:

φ1 = φ̂1 exp(kz) exp[i(kx− ωt)] (9.16)

φ2 = φ̂2 exp(−kz) exp[i(kx− ωt)] (9.17)

ξ = ξ̂ exp[i(kx− ωt)] (9.18)

Here φ̂1, φ̂2, and ξ̂ are the corresponding mode amplitudes. Inserting these mode
equations into the differential equations (9.10), (9.11) and (9.13) yields three alge-
braic equations:

−iωξ̂ + U1ikξ̂ = kφ̂1 (9.19)

−iωξ̂ + U2ikξ̂ = −kφ̂2 (9.20)

ρ1(−iωφ̂1 + U1ikφ̂1 + gξ̂) = ρ2(−iωφ̂2 + U2ikφ̂2 + gξ̂) (9.21)

Non-trivial solutions with ξ̂ 6= 0 are possible for

ω2(ρ1 + ρ2)− 2ωk(ρ1U1 + ρ2U2) + k2(ρ1U
2
1 + ρ2U

2
2 ) + (ρ2 − ρ1)kg = 0, (9.22)

which is the dispersion relation. Unstable, exponentially growing mode solutions
appear if there are solutions for ω with negative imaginary part. Below, we examine
the dispersion relation for a few special cases.

9.2 Rayleigh-Taylor instability

Let us consider the case of a fluid at rest, U1 = U2 = 0. The dispersion relation
simplifies to

ω2 =
(ρ1 − ρ2)kg
ρ1 + ρ2

. (9.23)

We see that for ρ2 > ρ1, i.e. the denser fluid lies on top, unstable solutions with
ω2 < 0 exist. This is the so-called Rayleigh-Taylor instability. It is in essence
buoyancy driven and leads to the rise of lighter material in a stratified atmosphere.
The free energy that is tapped here is the potential energy in the gravitational field.
Also notice that for an ideal gas, arbitrary small wavelengths are unstable, and those
modes will also grow fastest.
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A growing Rayleigh-Taylor instability:

If on the other hand we have ρ1 > ρ2, then the interface is stable and will only
oscillate when perturbed.

9.3 Kelvin-Helmholtz instability

If we set the gravitational field to zero, g = 0, we have the situation of a pure shear
flow. In this case, the solutions of the dispersion relation are given by

ω1/2 =
k(ρ1U1 + ρ2U2)

ρ1 + ρ2
± i
√
ρ1ρ2

ρ1 + ρ2
|U1 − U2| (9.24)

Interestingly, in an ideal gas there is an imaginary growing mode component for every
|U1 − U2| > 0! This means that a small wave-like perturbation at an interface will
grow rapidly into large waves that take the form of characteristic Kelvin-Helmholtz
“billows”. In the non-linear regime reached during the subsequent evolution of this
instability the waves are rolled up, leading to the creation of vortex like structures.
As the instability grows fastest for small scales (high k), with time the billows tend
to get larger and larger.

As the Kelvin-Helmholtz instability basically means that any sharp velocity gra-
dient in a shear flow is unstable in a freely streaming fluid, this instability is partic-
ularly important for the creating of fluid turbulence.

Under certain conditions, some modes can however be stabilized against the in-
stability. This happens for example if we consider shearing with U1 6= U2 in a
gravitational field g > 0. Then the dispersion relation has the solutions

ω =
k(ρ1U1 + ρ2U2)

ρ1 + ρ2
±
√
−k2ρ1ρ2(U1 − U2)2 − (ρ1 + ρ2)(ρ2 − ρ1)kg

ρ1 + ρ2
. (9.25)

Stability is possible if two conditions are met. First, we need ρ1 > ρ2, i.e. the lighter
fluid needs to be on top (otherwise we would have in any case a Rayleigh-Taylor
instability). Second, the condition

(U1 − U2)
2 <

(ρ1 + ρ2)(ρ1 + ρ2)g

kρ1ρ2
(9.26)
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9.3 Kelvin-Helmholtz instability

must be fulfilled. Compared to the ordinary Kelvin-Holmholtz instability without a
gravitational field, we hence see that sufficiently small wavelengths are stabilized be-
low a threshold wavelength. The larger the shear becomes, the further this threshold
moves to small scales.

Characteristic Kelvin-Helmholtz billows:

The Rayleigh-Taylor and Kelvin-Helmholtz instabilities are by no means the only
fluid instabilities that can occur in an ideal gas. For example, there is also the
Richtmyer-Meshov instability, which can occur when an interface is suddenly accel-
erated, for example due to the passage of a shock wave. In self-gravitating gases,
there is the Jeans instability, which occurs when the internal gas pressure is not
strong enough to prevent a positive density perturbation from growing and collaps-
ing under its own gravitational attraction. This type of instability is particularly
important in cosmic structure growth and star formation. If the gas dynamics is
coupled to external sources of heat (e.g. through a radiation field), a number of
further instabilities are possible. For example, a thermal instability can occur when
a radiative cooling function has a negative dependence on temperature. If the tem-
perature drops somewhere a bit more through cooling than elsewhere, the cooling
rate of this cooler patch will increase such that it is cooling even faster. In this way,
cool clouds can drop out of the background gas.
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