
Chapter 5

Radiative transfer in dusty
media

Cosmic dust is one of the most important constituents of the interstellar medium. By
mass it is only a small fraction: somewhere between 1% and 2%. But dust parti-
cles have radiative and chemical properties that make them hugely important. From a
chemical perspective they are important because they have surfaces on which chem-
ical reactions can take place much easier than in the gas phase. From a radiative
transfer perspective they are important because they have strong continuum opacities.
Atomic and molecular gas have opacities that are mainly due to lines (see Chapter 7),
which cover typically only a fraction of the electromagnetic spectrum. Dust opacities,
however, cover large swaths of the electromagnetic spectrum, and are thus much more
capable of affecting radiative heat transfer than gas opacities. Moreover, dust extinc-
tion can “protect” certain regions of the interstellar medium from ultraviolet photons,
thus enabling molecules to form in those regions. And finally, if an interesting object
is enshrouded in a dusty envelope, it is difficult to find a wavelength window by which
we can peer inside, because the continuum opacity of the dust typically has no or few
such windows, except at very long (millimeter) wavelengths.

If we aim our infrared and millimeter-wave telescopes at arbitrary points on the sky,
the emission we see is likely dominated by thermal emission from dust. Dust is ev-
erywhere. Molecular clouds appear black on the sky due to the dust extinction. Proto-
planetary disks around young stars appear black against background emission due to
dust extinction. Even in our own solar system dust is prevalent: the zodiacal light is a
result of reflection of sunlight off interplanetary dust particles.

In this chapter we will discuss the problem of radiative transfer in dusty media from
various perspectives. We will discuss what the typical opacities look like, and how
they are calculated. We will discuss the problem of thermal radiative transfer, in which
the objective is to calculate the temperature of the dust and to compute the spectral en-
ergy distribution (SED) of a dusty object. And we will discuss non-isotropic scattering
off dust particles.

5.1 Dust opacities - A first look
Let us have a look at typical astrophysical dust opacities. In this section we will not go
into detail (we will defer that to Section 6.1), but just give a general overview of dust
opacities, so that we have something to work with when we discuss radiative transfer
in dust continuum.

The most common solids in space are silicates (Si-O bearing minerals), carbonaceous
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materials (graphite, polycyclic aromatic hydrocarbons or organics) and ices such as
water ice, CO ice, etc. Most likely these minerals are mixed, since small dust particles
of a pure composition will coagulate to form small aggregates of grains of different
compositions. But it is not well understood if and how this process works. In this
section we will first discuss some general considerations of dust opacities, then we
will discuss the properties of some typical dust species, and findally we will discuss
some models of mixtures.

5.1.1 General considerations

Let us study the opacity of a spherical dust particle of radius a, made up of some
mineral X with bulk material density of ξ gram/cm3. The mass of the particle is thus
m = (4π/3)ξa3. If we observe the dust particle at some wavelength λ that is much
smaller than the grain size (λ ! 2πa), then we can treat the particle in the geometric
optics limit. In other words: we can treat the radiation as photons and we do not have
to worry about the wave-like nature of the light. In this limit the cross section of our
dust particle is the geometric cross section:

σgeo = πa2 (5.1)

If we have many of these particles, then the opacity per gram κν is

κν =
σgeo

m
(5.2)

In this limit the total opacity is thus constant with wavelength. A photon hitting the
dust particle can either be absorbed or it can be deflected (scattered). If our dust
particle is, for instance, a transparent sphere (e.g. a rain drop) with some index of
refraction, then virtually no light is absorbed, but the light is, through refraction on the
surface, redirected into another direction. In this case the opacity κν is nearly entirely
a scattering opacity. If, on the other hand, our dust particle is made up of graphite,
then only a small fraction of the incident light is scattered and most is absorbed. We
define the albedo ην as

κscat
ν = ηνκν , κabs

ν = (1 − ην)κν (5.3)

so that κabs
ν + κ

scat
ν = κν.

Before we go on, it should be noted that there is a subtlety here. Our assumption that
the wavelike nature of radiation can be ignored for λ ! 2πa is only partly correct.
Strictly speaking, in the very far-field, diffraction of light off the edges of our particle
will still cause a tiny bit of deflection of light. This should in principle be included
as scattering. The cross section for this diffraction scattering is πa2, in addition to
the geometric cross section. This means that the total cross section of a particle in
the limit λ ! 2πa is in fact twice the geometric cross section (see Section 6.1). This
sounds very anti-intuitive. Indeed, in real life we hardly ever notice this: the shadow
that I cast on the floor on a sunny day is not twice my geometric cross section! The
reason is that this scattering effect (a) only becomes apparent in the very far-field limit
and (b) it is extremely strongly forward-peaked. In other words: the deflection angle
of the light is, for λ ! 2πa, only very tiny. Such extremely-small-angle scattering
is almost as good as no scattering at all. So we have the choice: we can include this
effect, but treat it as truly small-angle scattering, or we can ignore this effect, and use
the geometric cross section.

If the wavelength is comparable or larger than a the geometric cross section approxi-
mation breaks down completely. The opacity κν will then become ν-dependent. It is,
however, convenient to define the extinction efficiency

Qext ≡
σ

σgeo
(5.4)
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and its absorption and scattering versions

Qabs ≡
σabs

σgeo
, Qscat ≡

σscat

σgeo
(5.5)

For λ ! 2πa we thus have Qν = 1, in the geometric optics approach, or Qν = 2 if we
include the edge-diffraction effect. For λ $ 2πa we get Qν to drop well below 1.

So now let us go to wavelengths much larger than the particle (λ $ 2πa). It turns out
that in this regime the wave is no longer sensitive to the cross section of the particle
but to its volume (i.e. mass). As we shall see later (Section 6.1) the origin of “opacity”
of dust is due to the reaction of the dielectic material in the dust particles to the oscil-
lating electromagnetic field of the radiation. As a result, the dielectric material sends
out its own electromagnetic fields that interfere with the incoming field. This inter-
ference leads to scattering and absorption. If the particles are small enough compared
to the wavelength, then the “front” of the particle cannot shield the interior from the
incoming radiation. Therefore the entire particle reacts dielectrically to the incoming
radiation, and therefore, for λ $ 2πa, the opacity is not a surface-, but a bulk effect.
This is the Rayleigh limit, and we will discuss this in more detail in Section 6.1.

We can estimate (or perhaps better: “guestimate”) what the absorption opacity in the
limit λ $ 2πa should roughly be, using three simple rules. The first is that, for fixed
λ the absorption opacity should not depend much on a, as long as λ $ 2πa. This
rule comes from the above conjecture that in the λ $ 2πa limit the absorption is a
by-mass effect. If we break a given mass of fine dust into even smaller dust particles,
the mass stays the same and by conjecture the absorption stays the same. The second
rule is that the transition wavelength between geometric opacity and by-mass opacity
is roughly at λ % 2π/a. The third rule is that the absorption opacity for λ $ 2π/a is
roughly a powerlaw with λ. We can only obey all three rules if in the Rayleigh limit
the absorption opacity κabs,ν ∝ ν ∝ 1/λ (Exercise for the reader).

For the scattering cross section in the Rayleigh regime it is more difficult to “derive”
the wavelength dependence. We will see in Section 6.1 that the Rayleigh scattering
opacity goes as κscat,ν ∝ ν4 ∝ 1/λ4.

All these simple considerations taken together leads us to an extremely simplified
but very useful generic dust opacity recipe (Ivezic, Groenewegen, Menshchikov &
Szczerba, 1997, Monthly Notices of the Royal Astronomical Society 291, 121):

Qabs,ν %
{

1 for λ ≤ 2πa
2πa
λ

for λ > 2πa , Qscat,ν %















1 for λ ≤ 2πa
(

2πa
λ

)4
for λ > 2πa

(5.6)

Please keep in mind that this is just a toy model! We will only use it as a model to put
our “real” opacities into perspective.

5.1.2 Opacities of silicates

Silicates are rocky substances dominated by Si-O bonds. The Earth’s crust consists
predominantly of this kind of material. Silicates represent an entire family of minerals.
The simplest one is Silica: SiO2, also known as quartz. Other silicates consist of
groups of Si and O combined with other metals such as Al, Fe, Mg, etc. The Si-O
groups are then negatively charged (anions), and they are then compensated by the
positively charged Al, Fe, Mg ions. In astrophysical environments the most common
known versions are

• Olivine: (Mg,Fe)2SiO4. Here the SiO4 forms an anion with -4 charge. This is
compensated by two Mg ions (forming Mg2SiO4, which is called Forsterite) or
two Fe ions (forming Fe2SiO4, which is called Fayalite) or any mixture of Mg
and Fe, as long as their abundaced compared to SiO4 add up to 2.
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• Pyroxene: (Mg,Fe)SiO3. Here the SiO3 forms an anion with -2 charge. This
is compensated by one Mg ion (forming MgSiO3, which is called Enstatite) or
one Fe ion (forming FeSiO3, which is called Ferrosilite) or any mixture of Mg
and Fe, as long as their abundances compared to SiO3 add up to 1.

On Earth all silicates are in crystalline form, though this does not mean that they are
all macroscopic crystals: the zones of crystalline orientation can be very small.

In space silicate dust particles are usually amorphous. Although their atoms are in
the right relative abundances, they are not arranged in crystalline patterns. This is
an important fact, because the opacities for crystalline and amorphous minerals dif-
fer greatly! The reason why cosmological dust is usually amorphous is presumably
because in the hostile conditions of outer space they are regularly bombarded with en-
ergetic particles which destroy any crystalline structures that may have originally been
present. Whenever crystalline silicates are nonetheless discovered in some object, it
is usually taken as proof of recent heating events that have caused the amorphous
dust particles to anneal and become crystalline again. This has, for instance, spurred
the great debate about radial mixing in protoplanetary disks, since crystalline silicates
were spectroscopically identified even in the cold outer regions of these disks (e.g.
Bouwman et al. 2003, Astronomy and Astrophysics, 401, 577). Typically, when sili-
cates are observed in crystalline form in space, they are usually Fe-poor (i.e. forsterite
or enstatite), for some reason that is not well understood. Apparently the process that
crystallizes the dust particle “sweats out” the iron. Where the iron then remains is
also unknown, perhaps in the form of pure iron grains that may or may not remain
physically attached to the forsterite or enstatite crystals.

In the margin figures you can see the absorption opacities of

Nr Formula Type Endmember Structure ξ [g/cm3]
1 Mg1Fe1SiO4 olivine amorphous 3.71
2 Mg0.5Fe0.5SiO3 pyroxene amorphous 3.2
3 MgSiO3 pyroxene enstatite amorphous 2.71
4 Mg2SiO4 olivine forsterite crystalline 3.2

which were computed using the methods described in Section 6.1 and optical constants
from the Jena database (see Section 6.1), based on papers by Jäger et al. (1994, Astron.
Astrophys. 292, 641), Dorschner et al. (1995, Astron. Astrophys. 300, 503) and
Fabian et al. (2001, Astron. Astrophys. 378, 228). For all opacities we used a grain
radius of a = 0.1 µm. In solid line is the κabs and in dotted line is the κscat.

We can learn a number of things from these figures. First of all the amorphous opaci-
ties are all dominated by two main peaks: one at about 10 µm and one at about 20 µm.
These are due to the Si-O bond: they represent vibrational transitions in this bond.
These peaks are extremely broad compared to typical gas line transitions. This is be-
cause, as opposed to a gas molecule, every Si-O bond can easily “borrow” or “lend”
some energy from/to the rest of the solid to match the wavelength of the incoming
photon. This is particularly strongly so in amorphous silicates. As you can see in
the crystalline silicate opacity: as soon as the atoms are in a crystal, the local Si-O
virbations will become part of global vibration modes, and it becomes less easy for
the atoms to “borrow” or “lend” some energy from/to the rest of the solid. Hence, for
crystalline silicates, the features are much narrower. As a result, also many additional
smaller harmonics show up. The opacities of crystalline silicates are therefore much
richer in structure than those of amorphous silicates.

Another thing we can see from these opacity diagrams is that iron (Fe) plays an im-
portant role in the absorption opacity in the optical and near-infrared. If a silicate
has little or no iron, its absorption opacity in this wavelengths range plummets. The
scattering opacity stays roughly the same, though. The question remains, however,
where the iron is. If the iron is in the form of little iron grains that may still remain
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attached to the iron-free silicate, then the overall optical and near-infrared opacity of
the combined dust aggregate might still have a substantial absorption opacity in these
wavelength ranges.

There are also two figures showing the size-dependency of opacity. Here the total
opacity (κabs,ν + κscat,ν) is shown. You can see that, indeed, for small grain sizes (a =
0.1µm and a = 1µm) the opacities longward of 10µm do not depend on a, just as
we discussed in Section 5.1.1. But when the grain size becomes big (a = 10µm) the
opacity does change, and becomes nearly flat. Except for a dip between 2 µm and 7
µm.

You can also see the behavior of the albedo. Typically up to λ % 2πa the albedo is
high, and then it quickly drops with larger λ. In the near-infrared the albedo can even
go almost to unity.

5.1.3 Opacity of carbonaceous dust

Another major constituent of interstellar dust is solid carbon. This can exist in various
forms. For instance, in the form of polycyclic aromatic hydrocarbons (PAHs) or of
graphite, or of nanodiamonds, or in the form of certain complex organic compounds.
Here we focus, however, on simple amorphous pure carbon grains. We take again
the optical constants from the Jena database, based on a paper by Jäger et al. (1998,
Astron. Astrophys. 332, 291).

In the figures in the margin we can see that the opacities of carbon are far simpler
than those of silicates. No particular dust features are seen. The “knee” shape of the
opacity in fact nicely follows the behavior of the toy model opacity of Section 5.1.1.
We see that the albedo peaks strongly around λ % 2πa and then drops off quickly
toward longer λ.

Another important thing to notice, by comparing these opacities to the silicate opac-
ities, is that the carbon opacities do not have a major dip in their opacity in the near-
infrared. This suggests that any dust opacity in the near-infrared is likely to be dom-
inated by carbon. And as we shall see later, this also has major consequences for the
thermal balance of dust particles.

5.1.4 Models of astrophysically relevant dust mixtures

So far we have looked at pure compositions of dust particles. However, Nature is
rarely so “clean”. It is highly likely that real dust grains in the interstellar medium
have mixed composition. This can either be because they have been formed this way,
or because two or more dust grains of different composition have stuck together to
form a small dust aggregate. Moreover, in the dense regions of molecular clouds,
certain gas species can freese out onto the dust grains, giving the dust grains an ice
mantel composed of H2O, CO, CO2, NH3, CH4 and other kinds of ices and organics.

Calculating the opacities of such “dirty” dust grains is not easy. There have been sev-
eral papers discussing models of such more realistic dust grains. The famous paper by
Draine & Lee (1984, Astrophysical Journal, 285, 89) is perhaps the most well-known
of these. Another famous paper is that by Ossenkopf & Henning (1994, Astronomy
& Astrophysics 291, 943) who calculated the structure of fractal dust aggregates ex-
pected to reside in protostellar cloud cores, and computed their corresponding opaci-
ties.

Perhaps the most striking feature of the Ossenkopf & Henning opacity is that the
contrast of the 10 µm silicate feature compared to the surrounding “continuum” is
much (!) less than for pure silicates. Many radiative transfer models of molecular
cloud cores have confirmed that this aspect of the Ossenkopf & Henning opacity is in
much better agreement with the observations than those of pure silicates.
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5.1.5 The scattering phase function

Contrary to the simple isotropic scattering we discussed in Chapter 4, we are dealing
with anisotropic scattering when it comes to dust grains. The scattering phase function
is the probability function p(µ) of scattering into the direction µ = cos θ, where θ is
the angle of deflection with respect to the incoming photon direction. So if we have an
incoming photon moving in direction n and the photon is scattered into the direction
n′, then

µ = cos θ = n · n′ (5.7)

The scattering phase function is normalized to unity:
∫ +1

−1
p(µ)dµ = 1 (5.8)

For isotropic scattering we have

p(µ) =
1
2

(for isotropic scattering) (5.9)

Note that p(µ)dµ is the probability that the scattered photon is deflected by an angle θ
for which µ = cos θ is between µ and µ + dµ. We can also define the phase function
with another normalization: Φ(µ), which is the probability per steradian. We have

Φ(µ) = 2p(µ) (5.10)

and
1

4π

∮

Φ(µ)dΩ =
1
2

∫ +1

−1
Φ(µ)dµ = 1 (5.11)

And for isotropic scattering we have

Φ(µ) = 1 (for isotropic scattering) (5.12)

It is a matter of taste which definition of the phase function you like best.

For scattering off realistic dust particles p(µ) can have a quite complicated form. We
will discuss this in more detail in Section 6.1, but for now let us say that for λ ! 2πa
the phase function is typically forward-peaked while for λ " 2πa it can be approxi-
mated as almost isotropic – though keep in mind that this is a great simplification. To
characterize how forward-peaked a phase function is, we define the symbol g as

g ≡ 〈µ〉 =
∫ +1

−1
p(µ)µdµ (5.13)

Strictly speaking, when we calculate the opacities κabs
ν and κscat

ν we should also, for
every ν, calculate the entire function p(µ). But to simplify things, people often use an
approximation called the Henyey-Greenstein phase function. It is defined as

pg(µ) =
1
2

1 − g2

(1 + g2 − 2gµ)3/2 (5.14)

This phase function is not particularly accurate, but it is so to speak the next step after
the isotropic scattering approximation. This means that, when we compute opacity
tables, we must compute and tabulate three numbers for each ν: κabs

ν , κscat
ν and gν.

During this process we compute gν from the true phase function using Eq. (5.13).
During the radiative transfer modeling we use Eq. (5.14).
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5.1.6 Making your own dust opacity tables

It is often necessary to create your own opacity tables, because the ready-for-use tables
may not be of the right grain size or composition that you need. What you need as
input are laboratory measured values of the real and imaginary part of the complex
refractive index. They are often written as n (real part) and k (imaginary part). You
can find tables of these values for various minerals in, for instance, the Jena database1

or the refractive index database2.

We will discuss in more detail how such computations are made. For now let us simply
refer to the BHMIE code of Bohren & Huffman, a version of which can be downloaded
from the website of B. Draine3. You also need to know the specific weight of the
mineral, to be able to convert the efficiency factors Qext

ν , Qscat
ν and Qabs

ν = Qext
ν − Qscat

ν

that you get from this code into the opacities κabs
ν and κscat

ν .

5.2 Monochromatic radiative transfer in dusty media
Let us consider the following problem of astrophysical interest. We have a dusty
molecular cloud with a star inside. We observe the cloud at a given wavelength λ, and
we wish to predict, using radiative transfer theory, what we will see. This depends, of
course, very much on the wavelength λ.

At optical wavelengths we will likely see the star shining brightly, unless a particu-
larly dense blob in the molecular cloud is between us and the star. We will also see a
reflection nebular surrounding the star: starlight that has reflected off the dust particles
in the molecular cloud and is scattered into the line of sight. Of course, if the star is
strongly obscured, the unobscured reflection nebula is, by comparison, more promi-
nent. If we make images at two or three wavelengths bands that are close to each other
(for instance the RGB of the human eye), then we will see that the reflected light in
the reflection nebula is blue. This is because, as we saw in Section 5.1, the scattering
opacity is a strong function of wavelength, typically dropping off very quickly toward
long wavelengths. In fact, the fact that these reflection nebulae are always blue shows
that the dust grains in these nebulae must be smaller than 1 µm, otherwise the color
would be more grey. Another thing we see is that any obscuring clouds will make the
objects behind them look red. This is again understandable in terms of the shapes of
the opacities we saw in Section 5.1.

M78 reflection nebula (ESO/Igor Chekalin)

If we now go to mid-infrared wavelengths we will likely start to see the thermal emis-
sion from hot dust close to the star, while the stellar flux has become less prominent.
As we go to longer wavelengths also the extinction by any clouds in front of the star
becomes less strong, but may still play a role.

If we go to even longer wavelengths, the far-infrared, the entire molecular cloud lights
up and the star has become invisibile because at these wavelengths it emits too little
flux. At these wavelengths most molecular clouds are optically thin, except perhaps
in the very densest regions.

How do we make model predictions of this? This is the topic of this section.

5.2.1 Making an image with volume rendering

Let us assume that we know the temperature Td(x) of the dust everywhere. In Section
5.4 we will discuss methods how to compute Td(x), but here we assume it to be known.
Let us also, for the moment, avoid the complexity of dust scattering by assuming that
the albedo, at the wavelength we are interested in, is zero. What we are left with is the
question how to make an image of a dusty cloud that is emitting thermal radiation.

1http://www.astro.uni-jena.de/Laboratory/Database/databases.html
2http://refractiveindex.info/
3http://www.astro.princeton.edu/˜draine/scattering.html
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The easiest way is to perform a process known as volume rendering, also called for-
ward ray tracing. It is very simple: we simply integrate the formal transfer equation

dIν(s)
ds

= αν
(x(s))[Bν

(

T (x(s))) − Iν(s)
]

(5.15)

along a ray starting behind our cloud, going through the cloud and ending up at the
observer. We only have to figure out how to choose the rays such that each ray belongs
to a specific pixel in the image we wish to make.

There are essentially two ways. One is to place the observer nearby (or even inside)
the cloud. This gives a “perspective view” of the cloud. The pixels of our image
are then mapped to directions n of the rays. There are several ways to map this, but
be easiest is to put the image plane in front of the observer, perpendicular to the ray
through the center of the image, and then calculate the direction n of each pixel from

Volume rendering of image: Local observer

the line connecting the center of the pixel with the 3-D location of the local observer.
This is illustrated in the figure in the margin. To choose the field of view, we can
specify the ratio of the size of the pixels to the distance between the image plane and
the observer. This gives the pixel size in radian, i.e. an angular size of the pixels.

The other way is to put the observer “at infinity”. In this case the rays of the image
will all be parallel. The image plane is again put perpendicular to the rays, but since
no “depth perspective” is present in this case, it does not matter where we put it. This
is illustrated in the other margin figure. The pixel size can no longer be expressed in
terms of angle. Instead must specify pixel size in centimeters. We can thus compare
pixel size with actual size scales of our object.

Volume rendering of image: Observer at infinity

In reality the observer is, of course, never truly at infinity. But for most cases this is
a good approximation. We can always convert the pixel size from cm to radian if we
specify the distance d to the observer: ∆xrad = ∆xcm/d.

The advantage of using the “observer at infinity” approach, and specifying the image
pixel size in centimeters instead of radian, is that we can compute the image first, and
worry about the distance of the observer later, as long as the observer is in the far-field.

5.2.2 Making a spectrum or a spectral energy distribution (SED)

Making a spectrum of a cloud using the forward ray-tracing method goes as follows:

1. We choose a set of frequency points νk at which we wish to compute the flux

2. For each k we compute, using the volume rendering method described above,
an image at sufficiently high pixel resolution.

3. We integrate over the image to get the flux:

Fν =
∑

i, j
Iν,i, j∆x(rad)

i ∆y(rad)
j (5.16)

That’s it. One sees that this is a costly procedure, since we have to make many images
and integrate over each one.

Often we do not want to compute the total flux, but instead the flux as would be
observed with a telescope with a certain aperture, i.e. the flux within a certain limited
region on the image. The size of this region may, in fact, depend on wavelength, since
typically the spatial resolution of a telescope varies with λ. Also, if we make spectral
energy distributions (SEDs), we will glue the fluxes from several different telescopes,
each with its own spatial resolution, into a single SED.

The easiest way to take all of this into account is to work with a mask: we zero-
out all regions of the image outside of a circle of some radius corresponding to the
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angular resolution of the telescope. A better way would be to convolve the image
with a realistic Point Spread Function (PSF) and then compute what would enter the
spectrograph. This is all quite a bit of hand-work, and it is very specific to the precise
observational method used. Therefore we regard this as “postprocessing” of the results
of a radiative transfer model, and leave it up to the scientist to know how to handle
this.

5.2.3 Pixels: Intensity versus Flux

What the ray tracing method give you is the intensity at the center of each pixel of
your image. In order to make a true image out of this we make the assumption that
this intensity represents the average intensity of the pixel. If the cloud that we are
observing is smooth enough, and if the pixels of our image are small enough, then this
assumption is probabily fine. In that case we can safely use Eq. (5.16) to compute the
flux from an image.

But if we choose too coarse pixel resolution of our image, such that small but bright
regions in our cloud could be accidently missed by the center-of-pixel ray, this as-
sumption may be wrong.

We are faced here with a fundamental difference between the way we calculate the
intensity of the image (using rays that end at the center of our pixel) and the way a
real digital camera makes an image. A real digital camera collects photons at the focal
plane. Each pixel is an element on the CCD chip that counts how many photons have
hit that element during the exposure time. These photons do not have to land exactly
at the center of the CCD element: any position within the element will contribute to
the pixel. In other words: photons from a given solid angle ∆Ω all contribute to the
pixel. The pixel thus does not really measure intensity. It measures the flux that comes
from a certain direction within a given solid angle ∆Ω.

It is therefore important that we make sure to choose our pixel scale small enough.
However, sometimes this would require us to make such high image resolution, and
thus so many pixels, that it becomes unpractical. In that case we may be forced to use
pixel-refinement methods.

Nested images to ensure the correct flux

One such method is to take small high-resolution images of the few particularly small
and bright regions, and then reduce their resolution (“rebinning”) and “glue” them into
the bigger picture. One could call this a nested images method or (as my co-workers
have sometimes called it) a babushka method, since this procedure can be repeated
several times until the requires hyperfine angular resolution is reached.

Another method is to use a quad-tree approach, in which any pixel can be subdivided
into four sub-pixels, and they, too, can be subdivided, etc, until all spatial scales in the
image are sufficiently resolved. We can then go back up the tree by taking the average
of the four sub-pixels every time we go one level back up. We end up with an image
at “normal” resolution, but in which the fluxes are correct. In the RADMC-3D code
this is called “sub-pixeling” and is done automatically.

Quad−tree image to ensure correct flux

In Section 5.2.8 we will discuss a third method, special for models in spherical coor-
dinates.

5.2.4 Wavelength grid: ν-points versus ν-bins

A related issue is the fact that we calculate, in the volume rendering method, the
radiative transfer at one precise frequency νk. In reality, in a spectrograph or if you
make images with a filter, your camera collects photons in a range of frequencies
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νk ± 1
2∆νk:

Fk =
∫ νk+

1
2∆νk

νk−
1
2∆νk

Fνdν (5.17)

If the opacities do not change much over the frequency range ∆νk, and if ∆νk/νk ! 1,
then this is not a problem. We can then safely take the flux at νk to represent the flux
over the entire bin:

Fk % Fνk∆νk (5.18)
But if one of the above conditions is not met, then this may not be a good approxima-
tion anymore. In that case there appears no alternative than to refine the frequency-
resolution. You can then, if you wish, always rebin back to a lower resolution or
integrate over a filter transmission profile.

5.2.5 Including “pointlike” stars in the volume-rendered images

At optical and near-infrared wavelengths the emission from individual stars in a
molecular cloud may dominate the image of the region. Even at mid-infrared wave-
length a pointlike object would still be visible in the images, even if the total flux is
dominated by the circum/inter-stellar dust. We must include such stars of course in
our image, but due to the much (!) smaller size of these stars compared to the dust
clouds, we are faced with a pixel-resolution problem of dramatic proportions. If we
look at, for instance, a circumstellar disk with a radius of 100 AU and we make an im-
age of 200×200 pixels centered at the star and covering the entire disk, then each pixel
is 1×1 AU2. The star has a radius of roughly R∗ % 10−2 AU. Our pixels are therefore
2 orders of magnitude too coarse to resolve the star. We could use the nested-images
method or quad-tree method to resolve down to the stellar surface. But if the inner
radius of the disk is at, say, 2 AU, then we, in a sense, waste a lot of pixels resolving
the empty space between the disks’s inner edge and the stellar surface.

In such cases it can be a good idea to treat the star separately, as a point source. The
idea is to render the dust cloud image as if no star were present. Then, after we
finished, we make a special 1-ray computation of the extinction between the stellar
surface and the observer:

Simple way to add unresolved star to pixel

τν,∗ =

∫ observer

star
αν

(x(s))ds (5.19)

The intensity Iobs
∗,ν we observe of the star is then

Iobs
∗,ν = I∗,νe−τ∗,ν (5.20)

where I∗,ν is the intensity of the star at the stellar surface, averaged over the surface
(averaged, in the sense of averaging over limb-effects, see Section 8.1).

To insert the star as a point source in the image we have to (a) find the location in
the image where the star should be and (b) convert the intensity I∗ that came out of
the integration into a flux-per-pixel. Let us do this for an observer-at-infinity. Let us
assume that the pixel has size S pixel = ∆

cm
x × ∆cm

y . The stellar surface has S ∗ = πR2
∗.

So we now update the intensity of that pixel as:

Iν,i, j = Iν,i, j +
S ∗
S pixel

Iobs
∗,ν (5.21)

A perhaps “nicer” and more realistic way would be to convolve the star with a PSF
and then add this to the image.

5.2.6 Including scattering in the volume-rendered images

So far we have ignored scattering. The images were rendered only for the thermal
emission from the dust. Including scattering in images made by volume rendering
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requires the use of a scattering source function S scat
ν . If we would have isotropic scat-

tering, then we could use methods such as those from Sections 4.4 or 4.5 to compute
this scattering source function. But with dust grains the scattering phase function is
often non-isotropic. A Monte Carlo method then appears the best way, and we will
discuss in Section 5.3 how this works.

To include scattering in the volume-rendered images is thus a two-stage procedure:
(1) First do a calculation of the scattering source function S scat

ν (x, n), where n is the
direction pointing to the observer, and then (2) do the volume ray-tracing with this
scattering source function and the known dust temperature along each ray:

dIν
ds
= αν

[

ενBν(T ) + (1 − εν)S scat
ν − Iν

]

(5.22)

which is identical to Eq. (5.15), but now with εν ! 1, i.e. with the scattering source
function included.

In Section 5.3 we will discuss a Monte Carlo method for computing S scat
ν (x, n).

5.2.7 Alternative methods for making images and spectra

Not all dust continuum radiative transfer codes use volume rendering for making im-
ages and spectra. The main reason is that it is harder with those methods to include
complicated scattering physics into the code such as full polarized scattering with
complex phase functions. Another reason is the pixel resolution problem we dis-
cussed in Section 5.2.3, which requires complicated tricks such as nested-images or
quad-tree methods to overcome.

An alternative class of methods, already descussed briefly in Section 4.2, is to collect
photon packages in a Monte Carlo simulation. Let us call these photon collection
imaging. To avoid the low chance that a photon package ends up going toward the
observer, it can be “forced” to go toward the observer at the last scattering event. And
there are several ways to do this, as already shown in Section 4.2. There are several
advantages of this type of method (if sufficiently optimized) over the volume rendering
+ scattering source function method:

• Since we simulate the motion of photons, rather than integrating abstract sets of
equations, it is easier to add new physics to the model.

• We do not need to worry about pixel size, since we in fact collect photon pack-
ages in much the same way as a real camera does. Stars, no matter how small,
are also automatically taken care of in this way.

• When making spectra we can afford comparatively few photon packages per
wavelength bin. The images that are produced at these wavelengths may then
look terrible, but their integrated fluxes might be accurate enough. With the
volume rendering method we always must render at the minimum required res-
olution; we may get nice images, but we throw them away anyway after we
computed the total flux. This is a waste of computer power.

The main disadvantage is the noisiness of the images. But this can also be an advan-
tage! The scattering source function method typically yields “nice” images even if
the photon statistics of the underlying Monte Carlo simulation is bad, but you pay a
price: strange effects can appear like streaks through the image which are due to pho-
ton paths that happen to be close to the line of sight. The photon collection imaging
methods do not produce “false niceness”: Either the image is too noisy, or it is good.

We will not work out the details of these methods here, but instead refer to a couple
of papers that discuss them:
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• Baes, S. (2008, Monthly Notices of the Royal Astronomical Society, 391, 617)
discusses an optimization of photon collecting methods for simulations of dusty
galaxies.

• Wolf, S. (2003, Computer Physics Communications, 150, 99) discusses the en-
forced scattering concept for astrophysical dust continuum transfer.

5.2.8 For spherical coordinates: Tangent Ray method

For problems with spherical symmetry there is a simple method of choosing the rays
that is very powerful, both for making images and spectra and for constructing the
Lambda Operator for doing multiple scattering / non-LTE problems. This is the tan-
gent ray method. Suppose we have a radial grid with cell walls at ri+1/2 and cell centers
at ri. The impact parameters bi of the rays are then chosen such that bi = ri, or alterna-
tively, bi = ri+1/2 (depending on if your algorithm of radiative transfer is cell-centered
or grid-centered).

Spherical coordinates are particularly useful for circumstellar envelopes such as class
O/I young stellar objects, stellar winds etc. Since these envelopes typically have den-
sity profiles that peak strongly toward the star, it is typically useful to choose the
r-grid such that you have more spatial resolution close to the star than far away. A
particularly useful choice is a logarithmic grid, for which

ri+1 − ri
ri

= constant (5.23)

Tangent ray method

With this method we do not need to make images in an (X, Y)-sense, because this
would simply lead to circularly symmetric bolbs. Instead, we compute the intensity
as a function of the tangent ray impact parameter I(b). This gives us a 1-D set of
intensities Ii = I(bi), which contain all there is to know about the spatial shape of the
object. With the choice of tangent ray impact parameters being adapted to the r-grid,
you automatically assure that also the radiation transfer adapts well to the increased
spatial resolution of the grid close to the star. This means that we do not need nested
imaging or equivalent methods discussed in Section 5.2.3.

Computing the flux from these “1-D circular images” is now simply

Fν = 2π 1
d2

∫ rmax

0
Iν(b) b db (5.24)

where rmax is the outer edge of the r-grid.

We can use the same tangent rays also to compute the mean intensity J at each grid
node. We simply employ the symmetries to assure that the rays all go through the
same point. The corresponding µ-angles are then

µ =

√

1 − b
2

r2 (5.25)

The choice of the tangent rays assures that between each pair of radial grid points

Computing J with the
tangent ray method

there is a ray that connects them. When we compute the mean intensity J at some r
we thus cannot accidently “miss” a bright region.

5.3 A Monte Carlo method for computing the scattering source
function

Let us now discuss a Monte Carlo method for computing the scattering source func-
tion. This method could also be used at the basis of the “photon collecting imaging”,
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though for that we would need a few extra features which we will not discuss. Here we
will focus on using the MC method only for computing the scattering source function.
Here is how it works.

We send out photon packages from all the sources in our model. For each photon
package we follow its path through the cloud, until the next scattering event. See
Section 4.2 for the basics of how to find the locations of the scattering events. The
scattering event will change the direction of the photon package, and we will continue
to follow it until the next event, or until the photon packaget leaves the model. We treat
only the scattering events as discrete events, and we use only the αscat

ν to determine the
next event.

While the photon package passes through the cloud, we allow absorption (αabs
ν ) to

progressively remove energy from the photon package. Suppose we have one source
of energy, a star with monochromatic luminosity L∗,ν erg s−1 Hz−1, and suppose we
we use N photon packages, then each photon package has luminosity lν = L∗,ν/N to
start with. However, as it passes through a cell with absorption coefficient αabs

ν (Note
that this is a cell-based algorithm), it loses part of its energy. If the length of the ray
element through the cell is ∆s, then the luminosity of the photon package after it has
passed through the cell is:

Volume−rendered scattered light image
of a near−edge−on protoplanetary disk
(Pontoppidan et al. 2005, Apj 622, 463)

lafter
ν = lbefore

ν exp
(

−αabs
ν ∆s

)

(5.26)

If a scattering event occurs somewhere in the middle of this ray segment, then ∆s is
calculated only until that point of course. In this way energy is “smoothly” peeled
off from the photon package. We follow the path of the photon package until either
the photon package has escaped, or lν has dropped below some critical value, which
should be determined by you, the modeler.

So, how do we compute the scattering source function from this? Let us first do this
for isotropic scattering, since that is the easiest. Every time a photon package passes
through a cell – whether or not it experiences a discrete scattering event or not – we
assume that it leaves a trace of scattering source function, like a snail. The scattering
source function S scat

ν in that cell is then updated according to

S scat
ν = S scat

ν + ην
∆slν
4πV

(5.27)

where V is the volume of the cell and ην is the albedo ην = αscat
ν /αν. We can, equiv-

alently, also store the scattering emissivity jscat
ν , the update of which would be, again

equivalently,

jscat
ν = jscat

ν +
∆τscat
ν lν

4πV
(5.28)

with
∆τscat
ν = α

scat
ν ∆s (5.29)

This method of computing the scattering source function uses the cell volume method
of Lucy (1999, Astronomy & Astrophysics 344, 282).

Earlier methods computed the scattering source function only from the discrete scat-
tering events. This is also possible, but it leads to extremely poor sampling of the
scattering source function in optically thin regions. Remember that many reflection
nebulae are very optically thin: such methods would therefore perform very poorly
when applied to those problems. In the cell volume method described here, a photon
package would leave a scattering source function contribution also in cells that are
extremely optically thin. This method is therefore much more robust.

Once we have sent out all our photon packages we hope to have a well-sampled scat-
tering source function S scat

ν (x). We can then go to the next stage: Volume rendering,
which we described already before. This two-stage image rendering has proven to be
quite robust and powerful.

Light source
Scattering source function method

67



Now let us see how we can include the angle-dependence of the scattering. The trick
is to include the angle θ between the direction of propagation of the photon n and
the direction toward the observer n′, i.e. cos θ = µ = n · n′. Together with the phase
functionΦ(µ) (Section 5.1.5) we then get the following update of the scattering source
function:

S scat
ν = S scat

ν + ην
∆slν
4πV

Φ(µ) (5.30)

The second state, the volume rendering, goes in the same way as before.

For isotropic scattering we did not need to know in advance where the observer is.
We could do one Monte Carlo run, and do many subsequent volume rendering runs
at different inclinations – using the same scattering source function. However, with
anisotropic scattering this is no longer possible. We have to specify the direction
toward the observer in advance, before we start the MC run. A compromise can be to
determine in advance a set of observer positions, and calculate the scattering source
function for all these directions at once, when a photon package enters a cell.

5.3.1 Thermal emission as source of scattered light.

There is one aspect of the scattering source function method that we have not yet
discussed: In addition to stellar photons, we can also have thermal emission from the
dust that may contribute to the scattering source function. How to include those?

We must first compute the total monochromatic luminosity of the thermal dust emis-
sion:

Ldust
ν = 4π

∫

V
αabs
ν (x)Bν

(

Td(x)
)

d3x (5.31)

We must now divide the N photon packages over the two sources of photons: the
star(s) and the thermal dust. One way of doing this is to simply divide according to:

Nstar =
L∗ν

L∗ν + Ldust
ν

N , Ndust =
Ldust
ν

L∗ν + Ldust
ν

N (5.32)

One could also draw a random number for each photon, deciding randomly which it
is (stellar or thermal photon).

If we decide that the photon package should come from the thermal dust, we have to
decide from where. One way to do this is to make a cumulative luminosity array Ci,
starting with cell 1 and adding up:

Ci+1 = Ci + 4πρiκabs
ν Bν

(

Td,i)
)

Vi (5.33)

where Vi is the cell volume. We end up with an array of Ncells + 1 elements. The first
element has value 0. We now roll a uniform random number between 0 and 1, called
ξ, and the cell from which the photon emerges is cell i for which

Ci < CNcells+1ξ < Ci+1 (5.34)

The location inside the cell where the photon starts its journey is random, and so is the
starting direction.

5.3.2 Weighted photon packages

Sometimes it can be useful to use the concept of weighted photon packages. Suppose
we have one very bright star, plus a rather dim star with a circumstellar disk. We might
be interested in the disk around the dim star. The dim star may be much dimmer than
the bright star, but since the disk is much closer to the dim star, the disk is still at
least as much (perhaps even more) irradiated by the dim star as by the bright star
at a farther distance. To ensure that even dim stars have a chance to irradiate their
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surroundings with sufficiently many photon packages, we can enforce that each star
emits, statistically, the same number of photon packages N∗. To compensate, we give
the photon packages of each star k its own luminosity: l∗

ν,k = L
∗
ν,k/N∗, such that the l∗

ν,k
of the bright star is much higher than that of the dim star.

We can do the same trick for the thermal dust emission, so that the total thermal dust
emission accounts for the same number of photon packages as a star.

And we can use this weighted photon package method to beam radiation from a ex-
terior star toward our model object. Suppose, as an example, we wish to model the
3-D atmosphere of a planet around a star. Our model grid encompasses the planet, of
course, but the star is an external source. If we allow the stellar photons to be sent
into arbitrary directions, then we waste an incredible number of photon packages that
never hit the planet, and consequently, we waste computer time. Instead, we can al-
ready beforehand reject any photons that do not hit the planet, i.e. we do not even emit
them. Instead we force all stellar photon packages to move toward the planet, but to
compensate, we give them less luminosity.

These ideas are all part of the family of variance reducing methods for Monte Carlo
simulations. By cleverly choosing and weighing your photon packets you can maxi-
mize the “bang for your buck”: getting good results with as little as possible Monte
Carlo particles.

5.3.3 Similarities to computer graphics methods.

The scattering source function method described here has some similarities with a
method used in computer graphics called photon mapping (Henrik Wann Jensen “Re-
alistic Image Synthesis Using Photon Mapping” 2001, ISBN: 1568811470). This con-
cerns the rendering of objects with surfaces in the presence of objects that can refract
light. In that method photons from a light source are sent out and followed through
refracting objects (such as a glass of water). When the photon hits a surface, the im-
pact site and information about the photon is stored in computer memory. When all
photons have been sent out, we have a map of photon impact sites. In the next stage,
a ray-tracing rendering (similar to our volume rendering, but then from the observer
backward) renders the image, with the photon impact sites as sources of light (similar
to our scattering source function, but now on a surface instead of in a volume).

5.3.4 Lambertian thermal emission or scattering from a surface

Lambertian scattering means that the intensity of the scattered light from a surface is
independent of the angle θ under which you look at the surface. A white sheet of paper
scatters the light approximately in a Lambertian way (though only approximately: you
can check this out yourself). In Lambertian scattering the outgoing photon has lost all
the information about its incoming direction. Lambertian scattering is therefore the
extreme opposite of specular reflection (i.e. mirror reflection) in which the outgoing
photon has a well-defined outgoing direction as a function of the incoming angle.

Thermal emission from a solid surface is also Lambertian: if you measure the intensity
under any angle θ you will see the same intensity. To first order one can approximate
the surface of a star as a Lambertian emitter. However, due to the layered structure
of the surface of the star, you can have deviations from this behavior, called limb
darkening or limb brightening. We will discuss those in the chapters on atmospheres.
For now, let us assume a stellar surface to be a Lambertian emitter.

Intensity is the same in all directions
Lambertian scattering or emission:

How do we implement such a surface into a Monte Carlo simulation? This turns out
to be subtle. Let us emit a photon package from some random position on the surface.
Intuitively one might think that we can now simply choose a random direction of the
photon, as long as cos θ = nsurf · nphoton > 0. That means: we draw two random
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numbers, ξ1 and ξ2, and we would say µ = ξ1 and φ = 2πξ2 (where φ is the angle of
nphoton around the nsurf direction). Unfortunately this is wrong...

Intensity has units erg sec−1 cm2 ster−1, but we have to clearly define how the “per
cm2” is defined: It is “per cm2 of surface perpendicular to the photon propagation
direction nphoton”.

In contrast, if we send out photon packages from a surface, we send out a certain num-
ber of photon packages “per cm2 of emitting surface, i.e. per surface perpendicular to
nsurf”, which is a factor of µ times smaller than the number of photon packages “per
cm2 surface perpendicular to nphoton”. This is because if you take a surface area S
perpendicular to nsurf , and you project this onto the emitting surface, you get a surface
area of S/µ, i.e. you get a larger surface area. This effect is similar to the fact that
a shadow of a person gets longer the closer you get to sunset. So, in order to assure
the same number of photons per surface perpendicular to nphoton we must emit fewer
photons per surface perpendicular to nsurf .

The probability function p(µ) for emitting a photon package from a surface into direc-
tion µ = cos θ is:

p(µ) = 2µ (5.35)
such that

∫ 1

0
p(µ)dµ = 1 (5.36)

The way to draw from this distribution is:

2
Lambertian scattering or emission:
Chance of photon emission per cm

µ =
√

ξ1 (5.37)
φ = 2πξ2 (5.38)

5.4 Determining the dust temperature with radiative transfer - An
overview

So far we have assumed that we know the dust temperature already before we start
out radiative transfer analysis. However, this is rarely the case. In fact, if we make
only a small mis-estimation of the dust temperature, we could end up with a spectrum
that violates energy conservation. For instance, if we estimate Td(x) a factor of 2 too
high, then we may end up producing 24 = 16 times too much radiation. Since most
of the dust emission in circumstellar and interstellar environments is powered by the
absorption (by the dust) of stellar radiation from nearby stars, such an overprediction
could easily lead to dust clouds emitting 16 times as much energy as they receive. This
leads to completely wrong spectral energy distributions. Even an error of 20% in the
dust temperature can lead to a factor of 2 error in the output power emitted by the dust.
Energy conservation is one of the most precious things in radiative transfer theory
(in fact, in all of physics). We don’t want to break this. Moreover, we shall see in
several examples that energy conservation can be used to explain several complicated
radiative transfer phenomena.

It is therefore of great importance to find a way to compute the dust temperature self-
consistently with radiative transfer.

5.4.1 A dust grain in radiative equilibrium

Because of its ability to couple strongly to radiation, dust grains quickly acquire a
thermal balance between emission and absorption of radiation. Let us calculate this
equilibrium in two different ways, first from the standpoint of a single dust particle,
then from the standpoint of a gram of dust.

Consider a single spherical dust particle of radius a. Let us assume that it has an
absorption cross section σabs = πa2. Let us also assume that its absorption cross
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section is independent of wavelength (it is, so to speak, a grey dust grain). If we put
this particle in the radiation field of a star, it will receive, per second, an energy of

q+ = πa2
∫ ∞

0
F∗νdν = πa2F∗ (5.39)

where F∗ν is the flux from the star as seen at the location of the dust particle. This
heating rate will heat up the dust particle until it reaches the temperature Td where it
can emit as much as it can absorb. The emission is

q− = 4πa2σSBT 4
d (5.40)

In radiative equilibrium we have q+ = q−, which leads to

Td =
(

F∗

4σSB

)1/4

(5.41)

The grain size has dropped out of this equation. The temperature is only a function of
the local stellar flux. We call this the grey temperature, because it is valid (and only
valid) for dust grains with a grey opacity, for instance for very large dust particles with
a constant albedo.

More realistic is to include the effects of opacity. Rather than looking at a single dust
grain, let us look at 1 gram of dust, spread over a region large enough that it is optically
thin. The heating rate per second per gram is

Q+ =
∫ ∞

0
κabs
ν F∗νdν (5.42)

The cooling rate per second per gram is

Q− = 4π
∫ ∞

0
κabs
ν Bν(Td)dν (5.43)

The 4π in this formula comes in because we want to integrate the emission in all
directions. In radiative equilibrium we have Q+ = Q−, so we obtain the following
equation

4π
∫ ∞

0
κabs
ν Bν(Td)dν =

∫ ∞

0
κabs
ν F∗νdν (5.44)

In a computer program we can solve this using, for instance, a root finding algorithm
such as zbrent() of the “Numerical Recipes” book. The key is to provide a subroutine
func(tdust) which calculates, for a given dust temperature tdust (=Td), the function

R(Td) = 4π
∫ ∞

0
κabs
ν Bν(Td)dν −

∫ ∞

0
κabs
ν F∗νdν (5.45)

The Fν and κν are given to this function for instance via a table (an array of values)
in a global variable or (in fortran) a common block. The function is then given to the
subroutine zbrent() which calls func(tdust) for various values of tdust, and tries
to find the root (the zero-point) of your function func(tudst). The temperature for
which that zero point is found is the temperature that solves Eq. (5.44). This is an
iterative procedure, and at each iteration a complete numerical integral over dν has to
be carried out. This can be a great burden on a radiative transfer code. So a faster
method, though perhaps slightly less accurate, is to tabulate the function Q−(Td) at the
very start of the radiative transfer model calculation, calculate the Q+ at the beginning
of each dust temperature calculation, and find the root of Q−(Td) − Q+ by look-up in
the table and, as a final step, linear- or spline interpolation.

Another way of looking at Eq. (5.44) is when we define the so-called Planck mean
opacity:

κabs
P (T ) ≡

∫ ∞
0 κ

abs
ν Bν(T )dν

∫ ∞
0 Bν(T )dν

=

(

σSB

π
T 4

)−1 ∫ ∞

0
κabs
ν Bν(T )dν (5.46)
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This is the average opacity, weighted with the Planck function at temperature T . Using
this quantity we can re-express the thermal balance equation (Eq. 5.44) as

4κP(Td)σSBT 4
d =

∫ ∞

0
κabs
ν F∗νdν (5.47)

This allows for another fast numerical solution method: At the beginning of the radia-
tive transfer simulation make a lookup table of the Planck mean opacity κP(Td). Then,
when you want to compute the dust temperature Td, first make an initial guess, look
up the Planck mean opacity at that temperature, then solve

Td =
(

1
4κP(Td)σSB

∫ ∞

0
κabs
ν F∗νdν

)1/4

(5.48)

Refresh your value for the Planck mean opacity, solve Td again, and repeat a cou-
ple of times until convergence. This convergence is usually reached after just a few
iterations.

Suppose now that the star with radius R∗ emits a perfect black body spectrum at a
temperature T∗. Then

F∗ν =
4πR2

∗πBν(T∗)
4πr2 (5.49)

where r is the distance between the star and the dust particle, where we assume that
the space in between is optically thin. Eq. (5.47) then becomes

4κP(Td)σSBT 4
d =
πR2
∗

r2

∫ ∞

0
κabs
ν Bν(T∗)dν (5.50)

which we can again write with help of a Planck mean opacity as

4κP(Td)σSBT 4
d =

R2
∗

r2 κP(T∗)σSBT 4
∗ (5.51)

which leads to

Td =
√

R∗
2r

(

κP(T∗)
κP(Td)

)1/4

T∗ (5.52)

Again this formula can only be evaluated numerically using iteration, but again the
convergence is fast.

The ratio of the Planck mean opacities is called the thermal cooling efficiency factor:

ε ≡
κP(Td)
κP(T∗)

(5.53)

Eq. (5.52) can then be written as

Td =
√

R∗
2r

1
ε1/4 T∗ (5.54)

If ε < 1, then the cooling is less efficiency than the absorption of stellar radiation. In
that case the dust temperature is larger than the grey temperature. For ε > 1 it is lower
than the grey temperature.

Typically for small astrophysical mixed grains we have ε < 1 and the dust temperature
is higher than the grey temperature. Big grains (λ $ 100 µm) have ε % 1 and are thus
cooler than the small grains.

Note also that we expect small silicate grains in a stellar radiation field to be cooler
than small carbon grains, because the carbon grains have much stronger opacity in
the optical and near-infrared. We could imagine that if dust grains in the inter- or
circumstellar medium form small dust aggregates of mixed composition, then any
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carbon monomer sticking to a silicate monomer could help heat up the silicate. We
thus expect that if even a little bit of dust coagulation takes place, the silicate grains
will be warmer than if no coagulation takes place at all.

In the margin figure we have calculated the temperature of a 0.1 µm radius carbon
dust particle as a function of distance from a T = 104 K, R∗ = 2.4R. Herbig Ae
star, where we for simplicity take the stellar spectrum to be a Planck function. For
comparison the case of ε = 1 (grey case) is overplotted as a dotted line. You see that
the farther away from the star, the larger is the difference between the grey and the
real temperature. That is because at large distances the dust is so cold that it emits
at much larger wavelengths than the radiation it absorbs. With the opacity dropping
with increasing λ, it is to be expected that ε decreases, and hence the temperature is
boosted by 1/ε1/4.

5.4.2 A dust grain close to a star

In Section Eq. (5.4.3) we have made one major simplifying assumption: r $ R∗, i.e.
that we are in the far field. This was the basis of Eq. (5.42). However, if we are, say,
at r = 1.2R∗ then the radiation field of the star can not be approximated as pointing
perfectly radially outward. It will have a substantial angular extent. We will then have
to replace Eq. (5.42) with

Q+ = 4π
∫ ∞

0
κabs
ν J∗νdν (5.55)

where J∗ν is the mean intensity of the stellar radiation at distance r from the stellar
center. This is given by

J∗ν =
1
2

∫ 1

µ∗

κabs
ν I∗ν (µ)dµ (5.56)

where I∗ν(µ) is the intensity of the star and

µ∗ =

√

1 − R
2
∗

r2 (5.57)

Assuming no limb-brightning/darkening, i.e. assuming that I∗ν is independent of µ, we
can write

J∗ν =
1
2
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√
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κabs
ν I∗ν (5.58)

Inserting this into Eq. (5.55) yields

Q+ = 2π














1 −
√

1 − R
2
∗
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∫ ∞

0
κabs
ν I∗νdν (5.59)

This is the full expression for Q+. If we take r $ R∗, then this reduces to

Q+(r $ R∗) % π
(

R2
∗

r2

) ∫ ∞

0
κabs
ν I∗νdν (5.60)

With F∗ν = πI∗ν(R∗/r)2 this becomes identical to what we had before in that limit
(Eq. 5.42). Yet, Eq. (5.59) is now valid for all r > R∗, also close to the star.

It can be convenient to rewrite Eq. (5.59) in a form very similar to Eq. (5.42):

Q+ = C(r/R∗)
∫ ∞

0
κabs
ν F∗νdν (5.61)

with the correction factor

C(r/R∗) = 2
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√

1 − R
2
∗
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(

r2

R2
∗

)

(5.62)
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From here, the rest of the derivation of the dust temperature is the same as before.
For instance, the dust temperature of a grain around a star with a blackbody spectrum
(Eq. 5.54) now becomes

Td = C(r/R∗)1/4
√

R∗
2r

1
ε1/4 T∗ (5.63)

At the stellar surface, r = R∗, and assuming ε = 1, the dust particle will have a
temperature Td = T∗/21/4. This 1/21/4 factor is due to the fact that the grain just
above the stellar surface, only sees half its sky filled with stellar radiation.

In the figure in the margin we computed the temperature of a grey dust particle (ε = 1)
close to a Brown Dwarf star with T∗ = 1000 K, assuming (for simplicity) a blackbody
stellar spectrum. The solid line is computed using the correct expression with the
correction factor Eq. (5.63). The dashed curve shows the resulting temperature if we
would not include the correction factor.

5.4.3 Optical depth effects: Thermal radiative transfer

If a dust cloud is very optically thin, then the temperature of dust around a star is given
by the formulae from Section 5.4.1. In many cases, however, optical depth effects play
a role, changing the picture. There are two main opposing effects:

• If the optical depth at the wavelength of the stellar radiation is non-negligible,
the stellar radiation will be extincted. As a result, the dust that is thus shielded
from the direct star light will be cooler than predicted on the basis of the opti-
cally thin formulae of Section 5.4.1.

• If the optical depth at the wavelength of the thermal dust emission is non-
negligible, the radiation that is thermally emitted by one grain can be absorbed
by another grain elsewhere in the cloud. Radiative energy thus does not im-
mediately escape the cloud to infinity (as was the assumption in Section 5.4.1),
but might pass through several intermediate locations before finally escaping.
The cooling of one region leads to heating of another, and vice versa. This is
the non-locality of thermal continuum radiative transfer. And since we do not
know beforehand the temperature of the other cloud regions, we do not know
the amount of heating we should expect. We are thus back at our “chicken or
egg” problem.

The first effect (the extinction of star light) is relatively easy to handle, since we must
only compute the extinction of the flux from the star to obtain the correct F∗ν :

F∗ν =
L∗ν

4πr2 e
−τ∗ν (5.64)

where τ∗ν is the optical depth toward the star and L∗ν the frequency-dependent luminos-
ity of the star. In Eq. (5.64) we made the assumption that the star is tiny compared to
the surrounding cloud, so that we can safely treat it as a point source. We then insert
this into the equations of Section 5.4.1 and we are done.

For the remainder of this section we will focus on the second effect, the mutual radia-
tive heating of the dust grains, which is a much harder nut to crack. The equation of
radiative equilibrium of a dust grain (Eq. 5.44) then acquires an extra term:

4π
∫ ∞

0
κabs
ν Bν(Td)dν =

∫ ∞

0
κabs
ν

(

F∗ν + 4πJdν
)

dν (5.65)

where
Jdν (x) =

1
4π

∮

Idν (x, n)dΩ (5.66)
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and is the mean intensity of the thermal radiation Idν emitted by the other grains, which
obeys the following formal transfer equation along any ray through the cloud:

dIdν
(x(s), n)

ds
= αν

(x(s))
[

ενBν
(

Td(x(s))
)

+ (1 − εν)S scat
ν

(x(s)) − Idν
(x(s), n)

]

(5.67)

or, more conveniently written without all the dependencies explicitly written out:

dIdν
ds
= αν

[

ενBν(Td) + (1 − εν)S scat
ν − Idν

]

(5.68)

Eq. (5.65) treats the radiation fields from the star and from the dust separately. This
is not a necessity: we can also put all radiation into the same symbol Itot

ν . But it is
convenient. Since the formal radiative transfer equation is a linear equation, we can
always split our radiation field Iν(x, n) into an arbitrary set of sub-components – if
we think that this is useful for our understanding or for the method of solution. In
this case we have a single star (or a few individual stars), which, due to its small size
compared to the cloud, we treat as a point source. The radiation from this star is thus
highly collimated:

I∗ν(x, n) = F∗ν(x)δ
(

n − x − x∗
r

)

(5.69)

with r = |x − x∗| where x∗ is the location of the star. Because of this high collimation
the integration of the formal transfer equation of this stellar radiation is simple: it is
given by Eq. (5.64).

In contrast, the radiation field from the thermal emission from the cloud is much more
diffuse. It goes in all directions. This component of the radiation field is much harder
to treat. It is therefore very natural to split the radiation field into a stellar and a diffuse
part:

Iν(x, n) = I∗ν(x, n) + Idν (x, n) (5.70)
and treat these two components each in the manner that suits that component best.
This is an easy way to contruct hybrid methods of solution of the transfer equations.
We will employ this splitting trick regularly during this lecture, in various different
contexts.

So with this splitting trick we arrive at Eq. (5.65) for the thermal balance of a dust
grain. However, since we do not know Jdν (x) in advance, we have the usual “chicken
or egg” problem. The simplest way to overcome this is to use the classical Lambda
Iteration scheme (Section 4.4). We iterate between integrating the formal transfer
equation for the diffuse radiation field Eq. (5.67) along a large number of rays, com-
puting Jdν everywhere using Eq. (5.66), inserting this into the thermal balance equation
Eq. (5.65), recomputing Td everywhere, and then go back to integrating the formal
transfer equation Eq. (5.67). For clouds that are not too optically thick at infrared
wavelengths, this method can work reasonably well. But, as we have seen in Chapter
4, for cases of higher optical depth the convergence can be very slow.

5.4.4 Absorption + Re-emission = “Scattering”

The thermal radiative transfer described in Section 5.4.3 has many similarities to the
isotropic multiple scattering problem discussed in Chapter 4. Consider the radiative
transfer problem from the standpoint of a package of radiative energy. The themal
balance equation (Eq. 5.65) says that each dust particle always thermally emits exactly
the same amount of energy as it absorbs. Therefore, every time such a package gets
absorbed by a dust grain, it must get re-emitted again to ensure a zero-sum energy
balance. The re-emission, however, is done at the wavelengths corresponding to the
dust temperature:

jdν = αabs
ν Bν(Td) = ρdκabs

ν Bν(Td) (5.71)
where ρd is the density of the dust in gram / cm3. An energy packet will thus get
re-emitted in an arbitrary direction and with a re-arranged spectrum. Or equivalently
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we can express this in terms of monochromatic radiative energy packets: the energy
packet gets emitted at a new frequency, randomly determined from the following prob-
ability distribution:

p(ν) =
κabs
ν Bν(Td)

∫ ∞
0 κ

abs
ν Bν(Td)dν

(5.72)

We can regard the absorption + re-emission process therefore as being equivalent
to isotropic scattering with frequency redistribution. As a monochromatic radiative
energy packet travels through the cloud, it may get absorbed and re-emitted, chang-
ing both its direction and its frequency. As it changes its frequency, it also finds
different opacities. For instance, it could happen that the packet starts at short wave-
lengths, where the cloud is extremely optically thick, and then, after an absorption +
re-emission event, acquires a long wavelength, where the cloud is optically thin. The
packet can then escape the cloud.

We see that the isotropic scattering analogy is very powerful, since it expresses the
thermal radiative transfer problem as a random walk problem But it also adds two
new aspects to the problem:

1. First the bad news. In the true isotropic scattering problem discussed in Chapter
4 a photon could get destroyed by thermal absorption (the photon destruction
probability εν). Here, however, the thermal absorption itself is a “scattering”
problem. This means that there is no photon destruction anymore! This makes
the problem extremely hard to solve, as it is equivalent to the stiffest isotropic
scattering problem: that of zero photon destruction (ε = 0). The difference
between our current problem and the problem in Chapter 4 is only that in that
chapter we assumed we already knew what Td is, while here we solve for Td.

2. Now the good news. In the true isotropic scattering problem discussed in Chap-
ter 4, if we would put the photon destruction probability to 0, then the photon
could only escape the hard way: by diffusively scattering its way outward until
it escapes. In our present problem, however, the photon packet can also escape
by getting re-emitted at a wavelength at which the cloud is optically thin. It thus
has an additional escape route.

At any rate, the similarity between the problem discussed in Chapter 4 and the present
problem suggests that we can also apply the methods of that chapter to the solution of
this problem. This is indeed correct. We will discuss several of these methods here,
plus their specialization to the problem at hand.

5.5 Thermal dust RT: Discrete Ordinate and Moment Methods
5.5.1 Moment equations for thermal radiative transfer

A robust way to deal with thermal radiative transport is to use the moment equations
(see Section 4.5.1). We have to rederive the equations, because we no longer have
monochromatic radiative diffusion. The monochromatic moment equations are (cf.
Eqs. 4.108, 4.111):

∇ ·Hν = αν
(

S ν − Jν
)

(5.73)
∇ · Kν = −ανHν (5.74)

If we have perfectly scattering particles (εν = 0), then S ν = Jν (see Eq. 4.19). The
right-hand-side of Eq. (5.73) then becomes 0, and the set of equations Eqs. (5.73,
5.74) essentially become homogeneous (i.e. they do not have a predefined source term
that we, the scientists, have to specify). So, once we have imposed a closure equation
(Section 4.5.2) and boundary conditions, the equations become self-contained.
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Now let us take the other extreme: Let us assume that the scattering albedo is zero
(εν = 1). We now have S ν = Bν(T ). Then the right-hand-side of Eq. (5.73) does not
become zero and the equations are not homogeneous. However, if we integrate both
equations (Eqs. 5.73, 5.74) over dν we obtain:

∫ ∞

0
∇ ·Hνdν =

∫ ∞

0
αν

(

Bν(T ) − Jν
)

dν (5.75)
∫ ∞

0
∇ · Kνdν = −

∫ ∞

0
ανHνdν (5.76)

Now we impose that the dust grains are in thermal equilibrium with the radiation
field. We already once went through this exercise: see Eq. 5.65 with F∗ν = 0. With
that equation the right-hand-side of Eq. (5.75) becomes zero:

∫ ∞

0
αν

(

Bν(T ) − Jν
)

dν = 0 (radiative equilibrium) (5.77)

So again our equations have become homogeneous, so that our equations become
self-contained:

∫ ∞

0
∇ ·Hνdν = 0 (5.78)

∫ ∞

0
∇ · Kνdν = −

∫ ∞

0
ανHνdν (5.79)

A coupled set of integral equations is, however, not easy to handle. So let us try to
reduce the equations. Let us define the frequency-integrated moments:

J =

∫ ∞

0
Jνdν (5.80)

H =

∫ ∞

0
Hνdν (5.81)

K =

∫ ∞

0
Kνdν (5.82)

Our frequency-integrated moment equations then become

∇ ·H = 0 (5.83)

∇ · K = −
∫ ∞

0
ανHνdν (5.84)

Unfortunately the integral on the right-hand-side still has the αν in it, which is
frequency-dependent, so we cannot immediately replace the integral of Hν to H. If
the grains were grey, i.e. αν = α, then we coupld place the α before the integral and
we would obtain

∇ ·H = 0 (5.85)
∇ · K = −αH (grey dust) (5.86)

which is an equation that is much easier to handle than Eqs. (5.78, 5.79). But if αν is
frequency-dependent, then what to do?

The trick is to define a flux-mean opacity in each of the three directions x, y, z:

αfm,k =

∫ ∞
0 ανHν,k dν
∫ ∞

0 Hν,k dν
=

1
Hk

∫ ∞

0
ανHν,k dν (5.87)

where k means either x, y or z. This is the average opacity with the flux (in x, y or z
direction) as a weighting function. In most cases αfm,x % αfm,y % αfm,z, but there might
be rare pathological cases where this may not be the case.
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Let us make the assumption that αfm,x = αfm,y = αfm,z and call this αfm. We then obtain

∇ ·H = 0 (5.88)
∇ · K = −αfmH (5.89)

which is valid also for real dust opacities. These are the frequency-integrated versions
of the moment equations, valid for thermal emission/absorption, assuming radiative
equilibrium.

We can join these two first order equations into one second order diffusion-type equa-
tion in the usual way:

∑

k,l
∇k

(

1
αfm
∇l( fkl J)

)

= 0 (5.90)

where fkl are the components of the frequency-integrated Variable Eddington Tensor.

So, when we have our solution J(x) to Eq. (5.90), how do we compute the dust tem-
perature T (x) from that? For that we need to define the mean-intensity-mean opacity,
i.e. the opacity weighted by the mean intensity Jν:

αJ =

∫ ∞
0 ανJνdν
∫ ∞

0 Jνdν
1
J

∫ ∞

0
ανJνdν (5.91)

This is the VET version of the Planck-mean opacity. As with the flux-mean opacity
and the Eddington tensor, Jν has to be computed with the full discrete ordinate method.
Using αJ we can now compute the dust temperature by solving:

αP(T )σSB

π
T 4 = αJ J (5.92)

for T , where αP(T ) is the Planck mean opacity at temperature T . This can be solved
via iteration:

Tn+1 =

(

παJ J
αP(Tn)

σSB

)1/4

(5.93)

where a few iterations are usually enough.

We can now perform a Variable Eddington Tensor iteration (see Section 4.5.3), where
in addition to computing the eddington tensor fkl, we must also compute the flux-mean
opacity αfm at each iteration. The resulting solution is then almost identical to the real
solution. The only approximation we made is to assume that αfm,x = αfm,y = αfm,z.

5.5.2 A note on the choice of the ν-grid for thermal radiative transfer

The choice of the ν-grid for problems of thermal radiative transfer requires some care.
There are basically two rules you have to keep in mind:

1. Make sure that the wavelength grid encompasses the main thermal emission
from both the radiation sources (e.g. the stars) and the dust. For instance: if
you have a star of T∗ = 10000 K and dust at a large distance of that star that
the dust temperature is roughly Td % 20 K, then the ν-grid must run at least
from 0.1 µm to 1000 µm. If you would choose it from, say, 10 µm to 1000 µm,
then you would probably find extremely low temperatures, because nearly all
of the radiation from the star has been cut out (since the stellar spectrum of a
T∗ % 104 K star peaks in the blue optical). If you would choose it from, say,
0.1 µm to 10 µm, you would probably get extremely hot dust, because you cut
off the wavelength range where the dust would want to cool, so you effectively
reduce the radiative efficiency ε.
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2. Make sure that even in the wavelength ranges in which you may not be inter-
ested, the wavelength grid is sufficiently finely spaced, say ∆ν/ν ! 0.2, other-
wise you might under- or over-estimate the stellar luminosity. However you do
not need extremely fine ν-resolution, because we use the wavelength grid here
only for the thermal radiative transfer.

Note that, after you obtained the dust temperature, you can use a different wavelength
grid for making SEDs and spectra using the volume-rendering. The wavelength grid
for the thermal radiative transfer is only meant for getting the thermal radiative transfer
right. For the images or spectra you can choose any wavelengths you like.

5.5.3 The thermal radiative diffusion equation, Rosseland mean opacity

Deep enough inside an optically thick region we can simplify Eq. (5.90) even more.
First we make the isotropic assumption, i.e. the Eddington approximation, so that
fkl = (1/3)δkl (the δkl symbol being the Kronecker delta). That reduces Eq. (5.90) to

∇ ·
(

1
αfm
∇J

)

= 0 (5.94)

which is already a fairly clean and simple equation.

But we still have to find a convenient expression for αfm. Here we follow the line
of reasoning of Svein Rosseland. We apply the Eddington approximation to the
monochromatic moment equation Eq. (5.74)

1
3
∇Jν = −ανHν (5.95)

We now make the assumption that the radiation field has a Planck spectrum with the
same temperature as the dust:

Jν = Bν(T ) (5.96)
This is a good approximation if we are deep enough in an optically thick region.

Note that this is not an automatically consequence of assuming radiative equilibrium
(Eq. 5.77). Radiative equilibrium can also be established with a radiation field that is
very non-planckian. An example of this is the radiation field at some distance from a
star: the shape of the radiation field may be a Planck function at the temperature of
the star, but it is diluted by a factor (R∗/d)2. A dust particle at a distance d $ R∗ will,
in radiative equilibrium, have a temperature much below that of the star.

Equation (5.96), on the other hand, is a much stronger constraint on the radiation field
and the dust temperature. It says that the temperature of the radiation field and of
the dust are the same. This is a good approximation deep inside an optically thick
medium, such as the inside of a star.

With this expression for Jν we can now write Eq. (5.95) as

Hν = −
1

3αν
∇Bν(T )

= −
1

3αν

(

∂Bν(T )
∂T

)

∇T
(5.97)

In other words: if we know what the gradient in the temperature T is, then we know
what the corresponding fluxHν is. So if we compute the flux-mean opacity (Eq. 5.87),
we can now directly insert this:

αfm,k =

∫ ∞
0 (∂Bν(T )/∂T )(∇kT ) dν

∫ ∞
0 (1/αν)(∂Bν(T )/∂T )(∇kT ) dν

=

∫ ∞
0 (∂Bν(T )/∂T ) dν

∫ ∞
0 (1/αν)(∂Bν(T )/∂T ) dν

(5.98)
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where clearly the ∇kT drops out. We see that all three flux-mean opacities are equal.
This flux-mean opacity is called the Rosseland mean opacity:

αRoss(T ) =

∫ ∞
0 (∂Bν(T )/∂T ) dν

∫ ∞
0 (1/αν)(∂Bν(T )/∂T ) dν

(5.99)

Now let us return to the diffusion equation Eq. (5.94), where we now replace the αfm
with αRoss. We can also replace

J =
σSB

π
T 4 (5.100)

by virtue of Eq. (5.96). So we arrive at

∇ ·
(

T 3

αRoss(T )
∇T

)

= 0 (5.101)

which is the final form of the radiative diffusion equation.

We can also express H in terms of ∇T and αRoss(T ). We then start from Eq. (5.89),
apply the Eddington approximation, set αfm = αRoss(T ) and insert Eq. (5.100). We
arrive at:

H = − σSBT 3

3παRoss(T )
∇T (5.102)

In fact, if we take the divergence of Eq. (5.102) we directly arrive back at the diffusion
equation, Eq. (5.101).

5.5.4 Worked-out example: Dusty envelope around a star

Let us apply the Variable Eddington Tensor method to a simple 1-D example, a spher-
ically symmetric dust envelope around a star, and try to understand the results at least
qualitatively with what we learned about diffusion theory.

Let us assume that the star has the temperature T∗ and radius R∗ equal to that of the
sun, and that it has a blackbody spectrum. Let us assume that the dust density as a
function of radial distance r is:

ρd(r) = ρ0

r2 (5.103)

for 1 < r/AU < 104, and zero outside of that range. Let us take the Draine & Lee
(1984) dust opacity for a = 0.03µm grains. We specify ρ0 implicitly by specifying
the radial optical depth at the V-band (λ = 0.55 µm). We take τV = 100, which is a
reasonably large optical depth. However, at long wavelengths (far infrared) the optical
depth of the cloud becomes smaller than unity again. Let us put artificially the albedo
to zero, so that we can apply the method we have discussed so far. Since the dust
grains are small, the albedo was anyway very tiny, so this is not a big problem.

Now let us solve this problem using the variable Eddington tensor method. In 1-D
this tensor becomes a scalar, since we will only be concerned with the frr component.
In fact, in 1-D this method is usually called the Variable Eddington Factor method
(VEF).

In the margin figure you can see the convergence history of the dust temperature. As
one can see, the VEF method converges quickly, in spite of the rather high optical
depth.

What we also see is that due to the optical depth the temperature inward of about
6 AU increases above the optically thin dust temperature. This can be understood
as follows: The optical depth is so large that no direct stellar light manages to pass
through the envelope. The radiation that we see from the outside is 100% thermal
dust emission. Now, we have to consider energy conservation. Somehow the energy
that is pumped into the system by the stellar radiation must be emitted in terms of
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infrared radiation. This happens at the photosphere of the envelope, i.e. roughly at the
the radius rpsphere where the infrared optical depth (the optical depth at wavelengths
corresponding to the peak of the infrared Planck function at the temperature of the
dust) is roughly unity. The emitting surface at this radius is S psphere = 4πr2

psphere. The
dust temperature at this radius must roughly be such that Linfrared % S psphereσSBT 4

psphere
equals the input luminosity of the star L∗. Of course, since the dust is not grey, these
are all just estimates. But within these approximations we can solve for this and obtain
a rough estimate of the radius and effective temperature of the photosphere.

Now, somehow the radiative energy has to be transported to that radius rpsphere, which
may be much larger than the inner edge of the envelope. And there may be a quite
large optical depth between the inner radius of the envelope and the photosphere. But
with the law of flux conservation we already exactly know what the flux F(r) at each
radius should be:

F(r) = L∗
4πr2 (5.104)

According to diffusion theory this thus sets the temperature gradient. If we assume
that the flux-mean opacity is roughly equal to the Rosseland mean opacity, and we use
the diffusion approximation, then we could simply start with Tpsphere at r = rpsphere and
integrate Eq. (5.102) in the form

F = −
4σSBT 3

3αRoss(T )
dT
dr

(5.105)

inward to obtain T (r). This is of course an approximation, because we assume the
diffusion approximation here, while the results shown in the figure in the margin are
the real result, because they were obtained with the VEF method. But from this simple
analysis we can understand that we may need a steeper gradient, the higher the optical
depth is. This can indeed be seen in the next margin figure, where the same problem
was calculated for three different cases: with optical depths τV = 0.1, τV = 3.3, and
τV = 100. The higher the optical depth, the steeper the temperature gradient in the
inner few AU. And therefore, the higher the temperature at the very inner edge.

This effect is exactly the same effect as the blanket that keeps you warm at night. If
you have a blanket laying over you, then you can turn down your metabolism while
still keeping it nice and warm. If you keep adding blankets, then the temperature
reaches a warmer and warmer steady state, until it becomes unconfortable and you
have to shed blankets.

How do these results compare to the optically thin case in the outer regions, far from
the star? As you can see from the margin figures, the optically thin temperature is
higher than the optically thick cases. This is because these outer regions are optically
thin in either model. In the fully optically thin case these outer dust particles see
stellar radiation, which consists of higher-energy photons, while in the case where
the inner envelope is optically thick, the photosphere of the dust produces “cool”
radiation. In both cases the bolometric luminosities are the same. The difference
is just that in the optically thick case it is in the form of cooler photons than in the
fully optically thin case. In a sense one can say that the color temperature of the
outgoing radiation gets cooler if the envelope gets a higher optical depth, because the
location of the photosphere moves out to cooler regions. Dust particles outside of the
photosphere will thus, in the optically thick case, see the same bolometric flux, but at
a lower color temperature, and they therefore have a higher radiative efficiency factor
ε = κP(Tdust)/κP(Tpsphere), and hence a lower temperature.

So now let us look at the emerging SEDs for the three optical depth cases. In the
margin figure you see the SEDs. For the τV = 0.1 case (solid line) you see that the
SED is dominated by radiation around λ %0.5 µm. This is the stellar radiation. At
longer wavelength the dust emission starts to appear, with a flux above that of the
Rayleigh-Jeans part of the stellar flux. This is called the infrared excess because the
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flux there is in excess of what we would expect if there would be no dust around the
star.

You see that as the optical depth increases, the stellar flux drops. This is simply be-
cause the dust extincts the stellar radiation. But the infrared flux increases: the SED
moves to longer wavelengths. This is exactly the effect described above: the photo-
sphere moves outward, hence the color becomes redder. The bolometric luminosity
remains the same. In the SED figure this can be see by the fact that the “height” of the
peak of the curve remains roughly the same. This is, in fact, the whole reason why it
is customary to plot not just Lν or Fν but to plot νLν or νFν. In a νLν plot the height
of the curve tells something about the total energy that is emitted at each wavelength.
Indeed, the unit of νLν is erg sec−1, which is the unit of bolometric luminosity, even
though we plot it as a function of ν (or λ). This is also the reason why such plots are
called spectral energy distributions (SEDs): they literally show at which wavelengths
the radiative energy resides.

Another interesting thing you can see from the SED plots is that at low optical depth
the 10 µm silicate feature is in emission, while in the high optical depth case it is in
absorption. This is generally the case for clouds that are illuminated by a source from
within. In the optically thin case you always get emission features, but in the optically
thick case you get an absorption feature because according to diffusion theory the tem-
perature gradient dT/dr must be negative in order to transport the radiation outward.
A negative dT/dr in the photosphere necessarily leads to an absorption feature.

Finally, as the optical depth gets larger, the millimeter and centimeter wavelength flux
increases, too. At these wavelength the circumstellar envelope is optically thin. The
total amount of energy emerging from the envelope at that wavelength is, however,
tiny compared to the total bolometric luminosity of the system. But this wavelength
range is ideal for observations of the inner regions of such dense circumstellar en-
velopes. Therefore millimeter wave interferometric observations are a often-used too
to study star forming regions, in which young stars are often still surrounded by their
birthclouds. In this wavelength regime we are mostly sensitive to the total amount of
dust along the line of sight. The temperature of course also plays a role, but the tem-
perature does not vary too much with envelope mass. You can see this in the margin
figure showing the T (r) for the three different optical depths. Since optical depth is
proportional to mass, the three cases (τV = 0.1, τV = 3.3, τV = 100) span a factor of
1000 in dust mass. Yet, the temperatures differ by only about 50%, and in the outer
regions even in opposite direction: the larger mass envelopes being cooler in the outer
regions. Since Bν(T ) ∝ T for λ $ hc/(3kBT ) (the Rayleigh-Jeans regime), the tem-
perature has only a moderate influence on the millimeter flux. However, the flux in
the millimeter is proportional to the dust density ρd, too. That differs by a factor of
1000 between the three models. Hence we expect that the millimeter flux is a good
measure of the mass of the system, but only a weak measure of temperature. Indeed,
in the SED figure at millimeter wavelengths the flux increases roughly by a factor of
33 between the models, exactly the ratio of the masses.

5.6 Thermal dust RT: Monte Carlo Method of Bjorkman &Wood
For multi-dimensional thermal radiative transfer in dusty media the currently most-
used method is the Monte Carlo method by Bjorkman & Wood (2001, Astrophysical
Journal 554, 615), often enhanced with the cell volume method of Lucy (1999, As-
tronomy & Astrophysics 344, 282) to assure smoothness also in optically thin regions,
and with the volume rendering and scattering source function method to assure smooth
images, spectra and SEDs.
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5.6.1 Main idea

The main thought behind the method is the idea that thermal absorption + re-emission
is a kind of “isotropic scattering processes”, but with frequency-redistribution (see
Section 5.4.4):

• A photon packet with some initial frequency ν, launched from e.g. a star, will
pingpong through the cloud from one “scattering event” to the next. Such a
“scattering event” can either be a real scattering event, in which case the fre-
quency remains the same and the angle may get redistributed non-isotropically,
or it can be an absorption + re-emission event, in which case the new direc-
tion is chosen completely randomly and a new frequency has to be chosen in
an appropriate way, which we will descuss below. A photon packet will not be
destroyed unless it hits, for instance, the stellar surface again. The only normal
way that a photon packet is finished, is when it has escaped to infinity. This
ensures luminosity conservation, which is an extremely important and powerful
property of this method.

• While a photon packet passes through the cells, it injects “energy” in the cells,
according to a recipe described below. This is very similar to the way we com-
pute the scattering source function (Section 5.3). Once all the photons have been
launched and have escaped the cloud, the final “energy” in each cell allows us
to compute the dust temperatures.

This method does not involve iteration. You chop the total stellar radiation (or other
sources) up into N photon packets, launch them all, and when you are ready, the dust
temperature is finished.

5.6.2 Injecting “energy” into the cells

Let us start with the injection of energy into the cell, because we need this next. We
start our simulation with the energy in all cells zero: Ei = 0 for all i. Each photon
packet represents a certain “energy”. I write energy with “ ” because it is actually a
luminosity (energy per second) but it is customary to talk about “energy”, so let’s do
this here, too. The “energy” of a photon packet is then

Eγ =
Ltot

Nγ
(5.106)

where Nγ is the number of photon packets used and Ltot is the total bolometric lumi-
nosity injected into the system by all stars and other energy sources.

In the original Bjorkman & Wood algorithm a photon packet only injects energy into
a cell if it experiences a discrete thermal absorption + re-emission event in that cell.
The energy Ei of cell i would then be increased as

Ei := Ei + Eγ (5.107)

As photon packets move through the medium they thus, in discrete portions, increase
the energies of the cells as the simulations progresses. In the next section we will see
how we can compute the dust temperature from this cell energy Ei. But before that,
let us refine this method, because you can imagine that in very optically thin regions
there is a high chance that a cell never experiences a discrete absorption + re-emission
event. That cell would thus still have Ei = 0 at the end of the simulation, and the
temperature of that cell would be 0, which does not conform to reality.

We can improve this using Lucy’s cell volume method, which we already discussed be-
fore in the context of the scattering source function (Section 5.3). The idea is that, even
if a photon packet does not experience a discrete thermal absorption + re-emission
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event, in reality some fraction of the photons within that packet would experience
such events. So, rather than dumping the entire Eγ in a cell when a discrete event
happens, it would be better to dump the energy smoothly into the cell according to:

Ei := Ei + Eγ
αabs
ν ∆s
Vi

(5.108)

where Vi is the cell volume and ∆s is the length of the ray segment through the cell.
Eq. (5.108) should be applied every time a photon packet passes through a cell, inde-
pendent of whether or not it experiences a discrete absorption re-emission event. This
means that also the optically thin cells will acquire a bit of energy, which means that
we can also determine the temperature in the optically thin regions properly.

5.6.3 Computing the dust temperature from the “energy”

So how do we compute the dust temperature in each cell Ti from the cell energy Ei?
The trick is to determine which temperature is needed for the dust in that cell to emit
that amount of energy. We thus have to solve the following equation for Ti:

4π
∫ ∞

0
αabs
ν Bν(Ti)dν = Ei (5.109)

The factor of 4π comes in because we are interested in the total energy emitted, inte-
grated over 4π steradian.

5.6.4 Handling an absorption + re-emission event

Each photon packet has a well-defined frequency ν. So we can determine the opacities
at that wavelength, and thus determine when the next event happens. We draw a
random number 0 < ξ1 < 1 and determine the optical depth until the next event:

∆τ = − ln(ξ1) (5.110)

This optical depth is the total (scattering + absorption) optical depth. When we arrive
at that location, we must determine whether this event is a true scattering event or an
absorption + re-emission event. This is simply done using the albedo ην = 1 − εν. We
draw again a random number ξ2 and decide:

ξ2

{

≤ ην → scattering event
> ην → absorption + re-emission event (5.111)

If it is a scattering event, we treat it in exactly the same way as we would do for the
scattering Monte Carlo simulation described in Section 5.3.

If it is an absorption + re-emission event, then we choose a random new direction (see
Section 4.2.2). But we also have to choose somehow a new frequency. The recipe
for doing so was invented by Bjorkman & Wood (2001, Astrophysical Journal 554,
615). The idea is the following. Let us focus on one particular grid cell i. We want to
assure that at the end of the simulation the randomly chosen frequencies νk of all the n
re-emitted photon packets k = 1 · · ·n emerging from that cell are distributed according
to the probability distribution function:

p(ν)dν =
jemis
ν

∫ ∞
0 jemis

ν′ dν′
dν (5.112)

where jemis
ν is the thermal emissivity in that cell, given by

jemis
ν = αemis

ν Bν(Tfinal) (5.113)

where Tfinal is the final temperature of the dust in that cell at the end of the Monte Carlo
simulation. The problem with this condition is that we need to know p(ν) during the
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Monte Carlo simulation, and at that time we do not yet know what Tfinal is going to
be.

To solve this chicken-or-egg problem, Bjorkman & Wood had the clever insight
that it is not necessary for each individual photon to be drawn from the distribution
Eq. (5.112) as long as the complete set of photons that have experienced an absorption
+ re-emission event in that cell obeys Eq. (5.112). This is a crucial difference that
allows one to use a different probability distribution function pk(ν) for each new event
k, under the condition that

1
n

n
∑

k=1
pk(ν) = p(ν) (5.114)

The trick is to look at the total amount of radiation per steradian emitted by the dust
in the cell at the end of the simulation. This is:

jfinal =

∫ ∞

0
jemis
ν,finaldν =

∫ ∞

0
αabs
ν Bν(Tfinal)dν (5.115)

Now, the temperature of the cell increases as the simulation progresses. So when
absorption + re-emission event k happens, the cell will have some temperature Tk
such that Tk > Tk−1, where k − 1 was the previous absorption + re-emission event
in that cell. Let us define T0 = 0. The total radiation emitted per steradian up to
absorption + re-emission event k is:

jk =
∫ ∞

0
jemis
ν,k dν =

∫ ∞

0
αabs
ν Bν(Tk)dν (5.116)

Since Tk > Tk−1, and since the Planck function has the convenient property that,
Tk > Tk−1,

Bν(Tk) > Bν(Tk−1) , for all ν (5.117)
we can be assured that

jemis
ν,k > jemis

ν,k−1 , for all ν (5.118)

If we define
∆ jν,k = jν,k − jν,k−1 (5.119)

we are sure that ∆ jν,k > 0 for all ν. This property lies at the heart of the Bjorkman &
Wood method. It means that we can assume that between absorption + re-emission
event k − 1 and k the dust emitted thermal radiation according to the spectrum ∆ jν,k.
This is shown in the margin figure: ∆ jν,k represents the grey area between the two
curves. At the end of the simulation (k = n) we thus assured that the total radiation
emitted is indeed jfinal:

jfinal =

n
∑

k=1
∆ jν,k (5.120)

So this means that if we choose the probability distribution function pk(ν) in the fol-
lowing way:

pk(ν) =
αabs
ν

(

Bν(Tk) − Bν(Tk−1)
)

∫ ∞
0 α

abs
ν′

(

Bν′(Tk) − Bν′(Tk−1)
)

dν′
(5.121)

Then we have, statistically, emitted our photon packets according to the distribution
function pfinal(ν) given by Eq. (5.112). And because of Eq. (5.117) we can also be sure
that pk(ν) is always non-negative. If that were not the case, then the method would not
work, because we cannot “take back” any photon packets that we have already emitted
earlier.

Note that when the photon packet acquires a new ν, it still represents the same energy
Eγ. This means that that photon packet represents a different number of physical
photons. This reflects the fact that radiative equilibrium conserves energy, not photon
number.
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5.6.5 Dealing with multiple thermally independent dust species

Often we do not have just one dust type in each cell, but multiple ones. For instance,
one could have a distribution of grain sizes. These grains would then each find their
own radiative equilibrium temperatures, which are typically not the same. This can
be easily handled in the Bjorkman & Wood method. Suppose we have M thermally
independent dust species which we mark with an index 1 ≤ m ≤ M. Let us say that in
cell i they have densities ρi,m. Then we can define the fractional absorption χm of each
dust species as:

χν,im =
αabs
ν,im

αabs
ν,i

(5.122)

αabs
ν,im = ρimκν,m (5.123)

with κν,m the dust opacity per gram for species m, and where

αabs
ν,i =

M
∑

m=1
αabs
ν,im (5.124)

We now determine the location of the next absorption + re-emission event using the
total opacity αabs

ν,i . When this event happens, we determine randomly, using the χν,im
as weighting, which dust species m has absorbed this photon packet, and thus which
should re-emit it. For thatm we then determine the new frequency ν using Eq. (5.121)
with αabs

ν replaced with αabs
ν,im.

The smooth injection of energy into the cell will also be done proportional to χν,im:

Eim := Eim + χν,imEγ
αabs
ν ∆s
Vi

(5.125)

The dust temperatures Tim are then determined each individually by solving
Eq. (5.109) with Ei replaced with Eim.

Note that if we have different mineral constituents, then one should consider if these
dust species are thermally decoupled. This may not necessarily be the case. For in-
stance, if you have carbon grains and silicate grains, they might coagulate to form
mixed carbon/silicate dust aggregates. The carbon and silicate particles are then in
thermal contact and would then not have independent temperatures. In fact, in that
case one should in principle make calculations for the opacity for mixed-composition
dust particles, which is not entirely easy. If the particles are not in physical contact,
for instance particles of different sizes, then they will be generally at different tem-
peratures, except deep inside optically thick regions where they thermally equilibrate
with each other through radiative heat exchange. Also, if the gas densities are very
high, they can equilibrate both with the gas via thermal contact with the gas, so that
they also have the same temperature.

5.6.6 Launching the photon packets

Photon packets come to existence due to the netto energy sources, such as stars. We
should not include the thermal dust emission as a source of photon packets, because
of our assumption of absorption + re-emission (and because we do not even know the
dust temperature in advance). The question is now: what will the initial ν be of such
a photon packet? The answer, for a single star, is: we choose ν on the basis of the
following probability density:

p(ν) =
L∗ν

∫ ∞
0 L∗ν′dν′

(5.126)

for a star with spectral luminosity L∗ν. For multiple stars you have to first determine
which star emits the photon. You can apply the same methods of weighted photon
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packets as discussed in Section 5.3.2. You must also account for the same issues of
Lambertian emission as discussed in Section 5.3.4.

5.6.7 Discussion of the pros and cons of the B&W method

The Bjorkman & Wood method with Lucy’s cell volume approach and possibly with
weighted photon packets has turned out to be a remarkably robust and reliable method.
The most important strengths of the method are:

1. It involves no iteration, so you don’t have to worry about convergence crite-
ria. If you do not use sufficient number of photon packets, your results will be
noisy, which will be hard to overlook. You therefore cannot accidently produce
unconverged results.

2. Because a photon packet cannot be destroyed (unless it hits some absorbing
surface), it will continue to pingpong through the cloud until it leaves the cloud
to infinity. This means that the method is extremely good in conserving energy.
No luminosity is accidently lost.

3. The fact that it is a cell based algorithm, and does not involve any high-order
integration methods, is OK in this case, even in the high optical depth regime.
The reason is that the diffusive transport of heat is automatically included in the
form of the random walk of the photon packet.

4. It is easy to extend to multiple thermally independent dust species, as we saw.

5. It is easy to apply to arbitrarily complex geometries and arbitrary types of grid-
ding such as oct-tree adaptive mesh refinement, or unstructured grids.

6. In contrast to Discrete Ordinate Methods, you do not have to worry about a
proper choice of angular coordinates (µk, φl). While in DO methods a wrong
choice of (µk, φl) could lead to catastrophic flux loss (the rays might “miss the
star” or “miss a hot region”), this is not a danger at all with the Bjorkman &
Wood Monte Carlo method.

7. For not-so-experienced researchers, using this method is easy and relatively
safe: even if, through lack of experience, the gridding or other setup issues
are not done in the best way, the result will usually (!) not be catastrophically
wrong.

It has one disadvantage over the VET and ALI methods:

1. At very high optical depths, such as those encountered in protoplanetary disks
for instance, the photon packet can get “stuck” very deep inside the disk, in the
sense that it might pingpong millions, if not billions, of times before it escapes.
Since the code literally follows each and every “scattering event” this can take
a long time. However, there are methods that improve this, such as the Modified
RandomWalk method by Min et al. (2009, Astronomy & Astrophysics 497, 155)
and subsequently simplified by Robitaille (2010, Astronomy & Astrophysics
520, 70).

The advantages usually outweigh the disadvantage, and therefore this B&W method
is hugely popular among scientists in the field of radiative transfer in dusty media. I
can strongly recommend it.
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5.6.8 A worked-out example: A simple model of a circumstellar dust disk

As a demonstation of what you can do with multi-dimensional thermal Monte Carlo
radiative transfer let us make a model of a dusty circumstellar disk. Circumstellar
dusty disks are known to exist around very young stars. They are thought to be the
birthplaces of planets, and are therefore often called protoplanetary disks. But dusty
disks are also known to exist around for instance post-AGB stars and supermassive
black holes. We will focus on the protoplanetary case.

We will use the RADMC-3D code, which is freely available online4. We will use
spherical coordinates (r, θ, φ) for dividing space up into cells. We will assume that
the disk is axisymmetric. This allows us to ignore the φ-direction. We will still al-
low photons to move in full 3-D, including the φ-direction, but as a result of the axial
symmetry we do not have to divide the φ-direction into cells. That makes the prob-
lem essentially 2-D with coordinates (r, θ), which makes it much less computationally
heavy.

For radiative transfer in circumstellar envelopes and disks spherical coordinates are
particularly well suited. But for defining the structure of the circumstellar disk it will
be more convenient to use cylindrical coordinates (rc, z), where z = 0 is the equatorial
plane. The two coordinate systems are related via

rc = r sin θ , z = r cos θ (5.127)

The equatorial plane is associated with θ = π/2. Now, doing a transformation from
spherical to cylindrical coordinates and back is a bit of a nuisance. Fortunately, if the
circumstellar disk is geometrically thin (flat) enough, then the following approxima-
tion is a reasonable one:

rc % r ,
z
r
%
π

2 − θ (5.128)

We will use this approximation from here onward, and we shall use θ and z/r inter-
changably.

It is customary to express the structure of a circumstellar disk in two steps. First you
specify the dependence of the surface density Σ(r) on r. The surface density is defined
as the vertical integral of the density:

Σ =

∫ +∞

−∞
ρ(r, z)dz (5.129)

For the rest of this section we will be concerned with the dust density. We will define
Σ(r) as a powerlaw:

Σ(r) = Σ1

( r
AU

)p
(5.130)

where AU is an astronomical unit, p is the powerlaw index for the surface density and
Σ1 is the surface density at 1 AU. It is likely that protoplanetary disks have higher
surface density closer to the star, i.e. we will choose p < 0. In addition to Σ1 and p we
must also specify the inner and outer edge of the disk: rin, rout.

The second step is to define what the vertical structure of the disk is. Let us, for
simplicity, assume that it has a gaussian density structure:

ρ(r, z) =
Σ(r)

√
2πHp(r)

exp












−
z2

2H2
p













(5.131)

where Hp is the vertical thickness of the disk. The p stands for “pressure” because if
we impose hydrostatic equilibrium, Hp would be the pressure scale height. But let us
just parameterize Hp(r) for simplicity:

Hp = H1

( r
AU

)q
(5.132)

4http://www.ita.uni-heidelberg.de/˜dullemond/software/radmc-3d/
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where q is the powerlaw index for this parameterization. Let us, for now, simply take
q = 1, meaning that the “opening angle” of the disk is constant. This is called a
conical disk, but unfortunately it is often called “flat disk” in the literature, which is
misleading (a disk would be flat if H1 % 0). We will consistently call it conical disk
here. If we would choose q > 1, then the disk is called a flaring disk. But let us first
take q = 1.

Now let us define the spatial grid. For the radial grid we take the radial grid ri such
that ri+1 − ri

ri
= constant (5.133)

i.e. a logarithmic grid. This assures that both the inner disk regions (close to the star)
as well as the outer disk regions (far away) are well sampled. The choice of inner and
outer edge of the grid depends on the model. We have specified that the disk has inner
edge rin and outer edge rout. So our grid must at least encompass this range. It could
also have a larger extent, but that would be a waste of grid points. So let us choose the
inner edge of the grid at rin and the outer edge at rout.

For the θ-grid we only cover:
θtop ≤ θ ≤

π

2
(5.134)

So we cover the region close to the equatorial plane, but we ignore the polar regions.
For a disk that is fine, because we expect the polar regions to be empty. To keep the
computational demand as small as possible we should choose θtop as big as possible,
but small enough that the entire vertical extent of the disk is included on the grid. We
take a regular grid in θ between θtop and π/2.

Note that with this choice of the coordinates and grid the grid cells will all have the
same shape in r, θ, but their size will increase with r.

Now let us define the frequency grid. We need a frequency grid in order to be able to
numerically conduct the frequency-integrals that appear in various parts of the Monte
Carlo method. Let us choose it logarithmically with 100 points between 0.1 µm and
104 µm.

For the opacity let us take the Draine & Lee (1984) astronomical silicate opacity. We
treat the scattering, for simplicity, as isotropic scattering.

For the star let us for simplicity we assume the stellar spectrum to be a blackbody of
temperature T∗. We also specify the stellar radius R∗.

As our fiducial model let us take rin = 0.1 AU, rout = 100 AU, Σ1 = 0.1 g/cm3 (surface
density of the dust), p = −1, q = 1.2, H1 = 0.05 AU, T∗ = T. and R∗ = R.. We take
100 gridpoints in r (logarithmically spaced) and 50 gridpoints in θ (linearly spaced
between π/2−0.8 and π/2). We use 105 photon packages for the thermal Monte Carlo
simulation as well as for the scattering source function at each frequency.

In the margin you see the results. The spectral energy distribution (SED) is shown at
four different inclinations (i = 0o, 30o, 60o, 90o). For all but the edge-on inclination
(i = 90o) the SED contains both the stellar flux (at short wavelengths) and the dust
thermal emission (at longer wavelengths). Between i = 0o and i = 60o you see a
small increase in the near-infrared flux because this emission is from the inner edge of
the disk, which emits primarily in equatorial direction; and you see a small decrease
of the mid-infrared because this emission is from the surface of the disk which emits
primarily toward the pole. Then, at edge-on inclination (i = 90o) something drastic
happens. The stellar light drops by a huge factor. This is because the disk is optically
thick: we look at the edge of the disk and thus cannot directly see the star. What we
see instead is the stellar light that was scattered off dust grains in the disk’s surface
layers.

The image shown in the margin was rendered at λ = 0.5 µm at an inclination of
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i = 60o, and with the stellar light blended out (e.g. using a perfect coronograph). The
color is the logarithm of the intensity, spanning a factor of 106 in intensity. You can
see the scattered starlight from the surface layers of the disk and the “dark lane” in
between.

5.7 Spectral Energy Distributions: How to “read” them
The emission from dust surrounding one or more stars tends to span a large wavelength
range. This is because the temperature of that dust typically spans a large range. Dust
grains that are close to a star are hotter than grains farther away. Therefore one can
loosely say that the wavelength of the emission tells something about the distance that
that dust is from a star.

We must make a distinction between emission from near the peak of the Planck func-
tion and emission from the Rayleigh-Jeans part of the spectrum. Emission from the
peak of the Planck function (or better: the peak of νBν(T )) contains most of the energy,
while the Rayleigh-Jeans and Wien parts contain only a tiny fraction of the energy.
Strictly speaking we should in fact talk about the peak of the modified Planck func-
tion κννBν(T ), but usually that lies not far from the peak of νBν(T ). A typical SED
from some circumstellar or interstellar dusty material can be regarded as a discrete
or continuous sum of contributions of the form κννBν(T ) at different temperatures T ,
possibly “postprocessed” with some extinction. If we observe an SED, we can thus
try to decompose it into these components. The wavelength of the peak of each of
these components gives their temperatures.

The strength of each of these components tells how much dust of that temperature is
there. This is related to the concept of covering fraction. Suppose we have a single
star that is fully surrounded by a geometrically thin dust shell of optical depth (at
wavelength near the peak of the stellar spectrum, i.e. typically in the optical) much
larger than 1. Then nearly all the radiation from the star will get absorbed by the
dust and re-emitted at infrared wavelengths. If the dust shell is optically thin at these
infrared wavelengths, then this re-emitted radiation will immediately escape. Since
all the stellar radiation is absorbed, and since we assume radiative equilibrium, all this
luminosity will be re-emitted in the form of this infrared emission. We therefore know
what the infrared luminosity will be: LIR % L∗.

Now suppose the shell has many holes in it, such that it effectively covers only 50%
of the sky as seen from the star. Then only 50% of the stellar light will be absorbed
and re-emitted by the shell. We then have LIR % 0.5 L∗. If, instead, the shell has a low
optical depth at stellar wavelengths (τ∗ ! 1), the shell may still cover 100% of the
sky, but will still only capture a small part of the stellar light.

The conversion of stellar radiation into infrared radiation by the circumstellar dust is
called reprocessing of stellar radiation.

We can define the covering fraction Ω the chance for each stellar photon that it gets
absorbed and re-emitted by the dust. If the dust clouds/shells are optically thick at
stellar wavelengths, thenΩ = Ωgeom, whereΩgeom is the geometrical covering fraction:
The fraction of the sky as seen by the star that is covered by a dust cloud. Using this
new concept, we have

LIR % Ω L∗ (5.135)

It should be kept in mind that Eq. (5.135) is only a rough estimate. Geometrical effects,
scattering, etc can all modify it. But as a rough estimate it works fairly well.

We can apply the ideas of covering fraction and reprocessing of stellar light to each
of the components of our SED decomposition. This is shown below in a series of
pictograms. Important is also the role of shadowing: if an inner cloud already covers
some part of the sky as seen by the star, then another cloud at larger distance can no
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longer “use” that part of the stellar radiation, as it has already been reprocessed into
the infrared.

In the following figure the first panel is the fiducial case. The other panels show the
SED of the fiducial case in dotted lines. The solid line is always the stellar flux and
the dashed line always the dust flux.
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This shows us that energy conservation helps us to “read” the SED.
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