Chapter 7

Line transfer

In contrast to dust, the opacities of gas are usually dominated by lines. These are
often called bound-bound transitions and they are ruled by quantum mechanics. The
gas atoms or molecules have discrete energy states. Collisions between the molecules
or atoms allow them to jump from one state to another. These are called collisional
transitions. Another kind of transition is by sending out a photon or by absorbing
one. These are called radiative transitions, and these are the main ingredient in line
radiative transfer. In this chapter we will start with the basics of line radiative trans-
fer. Then we will discuss several well-known atoms and molecules and their energy
level diagrams, their quantummechanical selection rules for radiative transitions etc.
We will then discuss method for solving line transfer problems. And finally we will
discuss some example problems.

7.1 Quantum states of atoms & molecules
7.1.1 Levels and their occupations

Consider an atom or molecule with Nieyes discrete quantummechanical energy states.
In radiative transfer jargon they are called levels. Let us write their energies as E; with
i =1+ Njevels, and order then in ascending order in energy: E;.; > E;.

Suppose now that we have one cubic cm of the atom/molecule gas somewhere, and
we count how many of these molecules are in each state. This gives us the occupation
number density N; belonging to each state (note that also this symbol is an N-symbol,
like MNievels, but it is customary to write occupation numbers with the symbol &;). The
total number of atom/smolecules per cubic cm is written as N and we have N = ) ; N;.
We can now define the fractional occupation number n; as

== 7.1
m= (7.1)
such that }}; n; = 1. One of the tasks of line radiative transfer is to compute the »; (or
equivalently ;).

Collisions between atoms or molecules can cause the atom/molecule to transit from
any state i to any other state j. In dense environments these collisions take place so
often that it is safe to assume that the occupation numbers are thermally distributed:

n_ N _ o~ Ei~ED/kaT (12)

ni N;

where kp is Boltzmann’s constant and 7 is the temperature of the gas. If this can
be assumed at some location, we say that the system is locally in thermodynamic
equilibrium, or in radiative transfer jargon: in local thermodynamic equilibrium (LTE).
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If, however, the density is very low, the radiative transitions can become more frequent
than collisional transitions, and this may lead to a non-LTE situation: the level popu-
lations will then no longer follow Eq. (7.2). The computation of the level populations
n; can then become quite complicated and we will discuss various methods to tackle
this problem in this chapter.

7.1.2 Degenerate states, statistical weights

Usually atoms and molecules have many states with exactly the same energy, i.e.
E;;1 = E; for some i. This is related to rotational symmetry. Consider, for example, a
hydrogen atom. As we learned from our quantum mechanics courses, we can expand
the wave functions of the electron position relative to the nucleus into states that are
a product of a radial and an angular part. The angular part can be expanded into
spherical harmonics ¥j,,, where [ and m are integers. The index [/ has values from
[ = 0 and upward and is the index for the total angular momentum. For a given [, the
values of m range from m = —I,-- -, +l. There are 2/ + 1 values of m. For a given [,
the values of m denote the different angular orientations of the wave function. The
classical analog is a spinning wheel that has angular momentum / along its rotational
axis. The m then gives the direction in which the axis points. Classically this would
have to be two angles; quantummechanically it is one integer m.

If there is no external influence that could “break the rotational symmetry” (such as an
electric or a magnetic field), the various states m = —I,--- , +/ cannot have different
energies, because the different orientations of the electron wave function should not
matter. One can then say that these states are actually the same state, but that the
state is degenerate. In other words: rather than treating all orientations of that state as
individual states, we treat it as a single state i with a statistical weight g;. For electronic
transitions of atoms we have g; = 2/ + 1, where [ is the orbital angular momentum of
the electron in state i.

Sometimes one is not interested in very small energy differences between levels. One
can then merge levels of nearly equal energy into one. The statistical weight of such
a combined state is then the total number of “real” states that are packaged into this
combined one.

If we include the statistical weights, Eq. (7.2) becomes

n_ N

_ @e—(Ej—Ef)/kBT (7.3)
n; N; gi

7.1.3 Partition function

Equation (7.3) gives the ratios of the fractional occupation numbers 7 ;/n;, but not the
fractional occupation numbers n; themselves. To find these we have to compute the
partition function Z(T)

2(T) = Z gie EilksT (74)

which is a function of the temperature 7'. It is important to sum over all states. The
fractional occupation number can then be written as

1 —E;[kgT
i = =7 ! 7.5
= oo 7.5)

Eq. (7.5) gives the fractional occupations of the various levels of atoms or molecules
that are in LTE. The Z(T) is the “normalization constant” of this equation.
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7.1.4 Collisional transitions between levels

A given atom or molecule typically does not stay in a given state forever. Atoms or
molecules regularly collide with each other, which can cause transitions from any state
i to any other state j. The rate (= events per second) by which an atom in state i is
collisionally changed to state j can be written as

Ci—>j = NK1—>1(T) (7.6)

where N is the number density (atoms per cubic cm) of possibly colliding particles,
and K;_,;(T) is the collision coeflicient. The computation of K;_, (T) is often very
complicated, but thankfully: for many atom/molecule species these calculations have
already been done by specialists and we can use their results.

If E; < E;, the collision coefficient is only weakly dependent on temperature, and its
values can sometimes be found in tables. The upward coefficient can then be computed
from the downward coefficient by demanding that the collisional upward/downward
rates keep the LTE populations intact:

I’lej_U' = I’l,’C,’_U' (77)
With Eq. (7.3) this leads to

Cjoi = Cioyy L B EpliaT (7.8)
J

In general, however, molecules or atoms may have different collision partners. For
instance, a CO molecule in the interstellar medium is typically much more often hit
by H, molecules than with other CO molecules. And in hot atomic gas, atoms are
typically most often hit by free electrons. For each type of collision partner one would
thus have a separate set of collision rates. If you are lucky, there is one type of particle
that clearly dominates, but sometimes two or more types of collision partners could
be important (for instance H, and He for CO molecules).

7.2 Line emission and absorption
7.2.1 Einstein coefficients

A transition from one level to another can also be facilitated by the emission or ab-
sorption of a photon. This is called a radiative transition, or a spectral line transition.
It means that we have to solve the radiative transfer equation:

dl,
=, -l 7.9
75 @ (7.9)
where the j, and @, are due to this radiative transition. Typically these are only ap-
preciably non-zero very close to the frequency corresponding to the energy difference
between the levels:

/’lV,‘jZEl'—Ej (710)

for E; > E;. Due to various line broadening effects the photon that is absorbed or
emitted does not have to be exactly at the frequency v;;. Instead we define a line
profile ¢(v) that describes the susceptibility of the transition to photons of frequency
v. The function is normalized ( fooo ¢(v) = 1), and has its maximum at v = v;;, and
quickly drops off for v < v;; and v > v;;. We will discuss the details of this line profile
function in Section 7.5.

Given the line profile ¢(v) the emissivity due to spontaneous radiative decay is given
by

hV,"
Jijy = 4_7:NiAij¢ij(V) (7.11)
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where, like before, N; = Nn;, and A;; is the Einstein A-coefficient, or radiative decay
rate for this transition, which has the dimension of s~!. In other words, 1 /A gives the
average time, in seconds, that an atom/molecule can stay in state i before radiatively
decaying to state j, assuming no collisional (de-)excitations take place.

In a similar fashion one could attempt to write the extinction coeflicient, which can
radiatively excite an atom/molecule from the lower to the higher level:
0 _ hV,‘j
¥y = 7 NjBiidij() (7.12)
where Bj; is the Einstein B-coefficient for extinction. 1 write here deliberately a °,
because we will slightly modify the expression for @;;, in a minute.

In addition to spontaneous emission and extinction there is also stimulated emission,
a process that we know as laser emission. It turns out that the best way to describe
this kind of emission is not by adding a term to the emissivity Eq. (7.11), but instead
add a negative opacity contribution to the extinction. This results in the following
modification of Eq. (7.12):

hV,"
Qijy = 4_7:(Niji = NiBij)¢i;(v) (7.13)

where Bj; is the Einstein B-coefficient for stimulated emission. Whenever we have
N;Bj; < N;B;j, we obtain a negative opacity and we get laser emission (for microwaves
this is called maser emission).

The Einstein coefficients are all related to one-another:

2hv3,
Aij = —5Bij Bjig; = Bijgi (7.14)
These are called the Einstein relations. They must apply in order to conserve a thermal
Boltzmann distribution (Eq. 7.3) in the presence of a Planckian radiation field at the
same temperature. It means that we only need to know A;;, and from that we can
calculate Bj; and B;;.

The values of A;; for permissible combinations of i and j for most atoms and molecules
of interest have been measured in laboraties. In Sections 7.3 and 7.4 we will discuss
these for various atoms and molecules, and where you can find the values of A;; on
the internet.

7.2.2 Alternative notation: The oscillator strength

Instead of the spontaneous radiative decay rate A;; (for E; > E;), some papers and
databases instead quote the oscillator strength f;;. The two are related via the follow-

ing formulae:
1
fij = _§Aij/701 (7.15)

where y.;; is the classical decay rate of the single-electron oscillator at frequency
wjj = 2nv;; given by
Zezwiz].

Yelij = (7.16)

3mc3
with e the electron charge, m the electron mass and c the light speed. This gives

3

5= =3 i o
Now the absorption oscillator strength f;; obeys
gifi = —9ifij (7.18)
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So we get

giAij = _ngfij = ngfji (7.19)

which is identical to Eq. (10.34) of Rybicki & Lightman. Typically the g;fj; (i.e. the
down-up) values are given in the typical line lists you find on the web. The correspond-
ing decay rate A;; can then be found using Eq. (7.19). The paper by Hilborn (1982,
American Journal of Physics, 50, 982) gives an overview of the sometimes confusing
and conflicting definitions used in the literature. Note, however, that Hilborn uses SI
units, while we use CGS here.

7.2.3 Doppler shift

If we have a moving gas with velocity v, then the lines will be doppler shifted with
respect to an observer at rest in the laboratory frame. The Doppler shift will depend
on the direction in which the observer is looking. Most radiative transfer codes use the
laboratory frame for the definition of the frequencies (and so will we in this lecture),
and so we must include the Doppler shift in the line profile. So, depending on the
direction of the radiation n, the line profile will be:

$ij(v, V) = ¢i; (v [1 - %n . v]) (7.20)

The velocity v is allowed to be dependent on location: v(x). This means that for a
given ray with given direction n the Doppler shift (and thus the value of ¢;;(v, v)) can
change along the ray. This is a very important fact to keep in mind, because it means
that light at some frequency v may pass through gas for long stretches unattenuated,
and then rather suddenly (at a location where the line-center frequency v;; doppler
shifts close to the frequency v) the opacity rapidly increases and then (once the line-
center frequency passes v) decreases again. This may thus lead to a limited region
along the ray where the gas becomes opaque. Likewise, a photon that is emitted at
the comoving line-center frequency v;;, corresponding to laboratory frame frequency
v, if it is lucky enough to not get absorbed for some distance, may suddenly find itself
“free” because the gas velocity gradient has shifted the line profile away from its own
frequency v.

7.2.4 Selection rules

Radiative transitions are typically only possible between a select set of pairs of states
(i = j). The quantummechanical “rules” that tell you which radiative transitions are
possible and which are not are called selection rules and they are usually described
in textbooks that describe the quantummechanical properties of the atoms/molecules
at hand. These rules are related to angular momentum conservation and symmetry
considerations in the atom+y — atom” or atom* — atom+y “reactions” (where “atom”
could also mean “molecule” and the * denotes a higher-energy state).

In practice we do not really have to worry ourselves about these rules, because we will
use atomic/molecular data files in which the possible radiative transitions are listed in
line lists (see below).

7.2.5 Which atomic/molecular data we need to know
If we assume that the level populations of the molecules and atoms are always in LTE,

then we can do radiative transfer using only the following data:

o A line list. This is a list (usually in ascii format) in which for each line the A;;,
E;, vij, gi, gj are given. From E; and v;; the lower energy level can be found
from E; = E; — hv;;. Some line lists also provide information about the shape of
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the line profile (see Section 7.5). In the sections below we will explain where to
find such lists.

o A tabulated partition function. From the line list alone we cannot yet compute
the level populations. As you can see from Eq. (7.5) we need the partition func-
tion as well. Often these are given in tabulated form as a function of temper-
ature. A simple linear interpolation in the table for the temperature of interest
is usually sufficient, since the partition function is usually a very smooth well-
behaved function.

For non-LTE radiative transfer we need more information:

e A level list, in which for each level the E; and g; is given.

e Atable (or formula) for the collisional transition rates. The collisional rates C;;
between each pair of levels. This can be a rather large table, since it also has to
be listed for a set of temperatures. Since often the downward rates are not so
strongly temperature dependent, usually the downward rates are listed for a few
temperatures, requiring you to interpolate. The upward rates can then be found
using Eq. (7.8). Sometimes, instead of a table, a formula is given.

o A line list, but this time containing, for each line, the index i of the upper and
Jj of the lower level, where these indices refer to the level list mentioned above.
An addition to this it should of course also list the A;; and possible information
about the line profile. In principle the line frequency v;; can now be calculated
using hv;; = E; — E;, but this is often not accurate enough, so usually this list
also contains v;;.

Since collisional rates are notoriously difficult to measure in the lab, for many
atomic/molecular species only the line lists (for LTE radiative transfer) are available.
And for those species for which the collisional data is available, those data are some-
times not 100% reliable. Therefore, non-LTE line transfer is not only difficult from a
technical perspective, but also from the perspective of the uncertain collisional rates
(the A;; rates, in contrast, can be relatively easily measured and are thus much more
secure).

7.3 Some examples of atomic species

For atomic species the lines are electronic transitions. The electron(s) in the outermost
shell can be excited and deexcited, leading to the lines we see. It is virtually always a
good assumption to assume that all other electrons in the atom are in their respective
ground state, so that we only have to worry about the electron in the outer shell that
is in an excited state. The level diagram of the atom thus corresponds to the energy
levels of that electron. For atoms which have only a single electron (H, He*, Li%+,
Be3* etc), often called hydrogen-like, the level diagram are all nearly identical to that
of hydrogen, just scaled by Z2, where Z is the proton-number of the nucleus. Likewise,
atoms that have two electrons (He, Lit, Be?*, B3* etc), called helium-like, the level
diagrams are those of Helium, scaled by (Z/ 2)2, etc.

Note: It is customary to write lines from neutral atoms as e.g. HI, or Hel, or OI-lines
etc., while for singly ionized species the lines are Hell, OlIl-lines. This is a historic
custom. Unfortunately this custom is often not entirely correctly applied, for instance
by talking about an HII atom (i.e. proton). Strictly speaking the notation should apply
to the lines (or other spectral features), while the atoms are better identified as H* or
He™ or O** etc.
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7.3.1 The hydrogen atom and hydrogen-like atoms

The hydrogen atom is the fundamental atomic example by which the atomic models
for the higher-mass atoms are inspired. Hence its particular importance.

The electron in hydrogen atom has a ground-state energy equal to the Rydberg con-

stant:

mee* mec2a?

E =-Ry=- = =-13.6eV 7.21

1 y th 2 € ( )
where m, is the electron mass, e the electron charge and 2 = h/2nr, and @ = e [he ~
1/137 is the fine-structure constant. For hydrogen-like atoms with nuclear charge Z

this formula becomes

mee*

E, =-7° T —-Z’Ry (7.22)
The higher quantum levels are marked with the principal quantum number n =
1,2,3,---,00, the electron orbital angular momentum quantum number [ =
0,1,---,n — 1 and the corresponding angular orientation quantum number m =
—1l,---,+[, as well as the electron spin state s = J_r%. To first order the energies of

the quantum states only depend on n:
Epims = E, = —ZZ% (7.23)

This means that the states with principal quantum number n are 2n>-fold degenerate,
because there are n® orbital states and 2 spin states for each n, all having the same
energy. In principle this means that we might want to bundle all these degenerate states
into one “super-level” of the hydrogen atom. This is not entirely correct, because
even though all these levels have the same energy, the selection rules do not allow
transitions between orbital states of the same /. This means that if an electron is stuck
inthen=2,1=0,m=0,s = +% state, it cannot radiatively decay down to the
ground state of hydrogen (n = 1,/ =0,m =0, s = i%). In the very low density
environments of the interstellar medium the collisional downward rate (which is not
bound by selection rules) may be so rare, that the atom can stay in that n = 2 state
for a very long time. Only a two-photon emission can then bring the hydrogen atom
back to the ground state, but (a) such two-photon processes have a very low rate and
(b) they produce a continuum rather than a line, because for a two-photon deexcitation
only the sum of the two photon energies has to fit to the energy difference of the two
levels. Therefore, in spite of the fact that the levels have the same energy, we still
cannot bundle them all together. We can bundle all levels of the same n and [, but
different m and s together into a “super-level”, since they behave identically.

When we include the effects of special relativity (because, close to the nucleus the
electron moves at a speed not too far from the light speed) and spin-orbit coupling
(because the electron spin and the electron orbit can interact) the energy levels at a
given n will acquire small adjustments, giving the different quantum states slightly
different energies:

Enims = Eyy = —Z

2
>Ry (1 N (Za)

n2? n?

3
jf - - ZD (7.24)
2

where j is the total angular momentum quantum number.

The total angular momentum quantum number is a combination of the orbital and spin
angular momenta. For a given orbital angular momentum / and given spin s the total
angular momentum is:

Jj=1l+s (7.25)

In other words: if the electron spins oppositely to its orbit, it lowers the total angular
momentum quantum number j, while if it spins in the same direction, it increases it.
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For [ = 0 we have j = % as the only possibility. For / = 1 we have j = % and j = 5 as
the two possibilities.

Now, where does m come in? One might be tempted to say that for each combination
of / and s we have 2/ + 1 possible values of m, which would lead to 2/ + 1 states with
j=1- % and 2/ + 1 states with j = [ + % However this does not work this way.
Suppose we measure s along the z-axis, then for m # 0 we cannot speak of “opposite
to orbit” or “same direction as orbit” because m # 0 means that the orbital spin is not
aligned in z-direction. Instead we have to start with a combination of / and j, each
having 2j + 1 states, i.e. the statistical weight is

g=2j+1 (7.26)

Together, the j =/ — § and j = [ + 1 states are 2(2/ + 1) states.

Example: Let us look at all the possible [ = 1 states. For j = % will have 2 states

and j = % will have 4 states. Together they have 6 states, which is indeed equal to
221+ 1).

For this reason it is more useful to use the 7, [ and j quantum numbers instead of n, /
and s.

The splitting of the principal levels according to Eq. (7.24) is called fine-structure
splitting. It clearly is the strongest for small n (because then the electron is the closest
to the nucleus, and thus moves the fastest) and for large Z (because then the electron
is even closer to the nucleus).

If we would also include the coupling between the electron and the nuclear spin, we
would split the levels even further, according to the hyperfine splitting. For hydrogen
this leads to the famous 21 c¢m radio line, which plays a fundamental role in the ob-
servation of neutral hydrogen in our Milky Way and the Universe. However, for most
other astrophysical applications hyperfine splitting is not so important, so we will not
dig into this any further.

The only levels that have exactly the same energy are those with the same n, [, j, but
different m. The reason is simple: the quantum number m has to do with the orien-
tation of the orbitals in space. If there are no external influences which introduce a
preferred direction, the energies cannot possibly be different. Only if we impose an
external electric or magnetic field we can break this rotational symmetry, and only
then can the different orientations m possibly have different energies. Breaking the ro-
tational symmetry with a magnetic field is called Zeeman splitting and with an electric
field it is called Stark splitting.

Traditionally the quantum states are written with the following notation: States with
orbital angular momentum [/ = 0 are written with the symbol s, those with [/ = 1 with
the symbol p, those with / = 2 with d, those with [ = 3 with f and continuing with g,
h etc. A state with n = 3 and / = 1 is then written as 3p. The ground state is 1s. For
n =2 we have 2s and 2p, for n = 3 we have 3s, 3p and 3d, etc.

Typically the levels and their possible transitions are shown in a Grotrian diagram, in
which the energy is on the y-axis and the orbital quantum number / on the x-axis. The
reason why on the x-axis the / quantum number is given is because the most rigorous
selection rule states that Al = 1. In the Grotrian diagram the transitions always have
to connect levels in neighboring columns, not in levels in the same column (same /).

7.3.2 Multi-electron atoms

When an atom contains more than just 1 electron, things become more complicated,
but we can still use much of what we know from the hydrogen atom: electrons still
occupy levels with principal quantum number 7, orbital quantum number / and spin s,
just like in the hydrogen atom. The differences are: (a) if one of the electrons occupies
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a level, that level is no longer available to the other electrons (apart from the statistical
weight of the level), (b) the presence of other electrons changes the overall charge
distribution in the atom, and thus changes the energy levels of the electronic states, (c)
it now becomes important to consider how the electron’s spin and orbital states relate
to each other.

The state of an atom is given by the occupations of the orbitals and the term symbol.

The way we write the occupation of the orbitals is by denoting the number of electrons
in each configuration as a superscript. For instance, the ground state of Helium would
be 1s? while the group state of He* or H is 1s!. For Lithium (Z = 3) the ground state
is 1s>2s', the oxygen (Z = 8) ground state it is 1s>2s*2p*, etc.

For a given occupation of the orbitals, there can be different configurations of the
electrons among each other, leading to different total spin §, total orbital angular
momentum L and total angular momentum J of the multi-electron system. We will
not go into any detail on how these come about, but merely introduce the Russell-
Saunders term symbol as a way of writing this configuration:

2+, (7.27)

where L is to be replaced with S for L = 0, P for L = 1, D for L = 2 etc (the symbols
being the capital-letter versions of the orbital notation of the hydrogen atom). The
symbol S can be integer or half-integer, and so can J. The statistical weight for each
state (due to rotational symmetry, see the hydrogen atom) is:

g=2J+1 (7.28)

Typical excitations are of electrons in the outer shell (i.e. largest principal quantum
number). That means that usually all the inner shells are fully occupied, and we need
to concentrate only on the outer shell.

Example: the doubly-ionized oxygen atom (O++, sometimes written as OIII) has the
following lower 6 levels:

i E (eV) g L J S configuration
1 0.0000000 1 1 0 1 1s%2s%2p* °P
2 00140323 3 1 1 1 1s%2s2p* Py
3 00379609 5 1 2 1 1s%2s*2p* 3P,
4 25135777 5 2 2 0 1s%2s%2p® 'D,
5 53543760 1 0 0 0 1s2s*2p*> 'Sy
6 74793581 5 0 2 2 1s%2s'2p® S,

The first column is just a counter. Note that the energy offset is chosen such that the
ground state is £ = 0. Its grotrian diagram is shown in the margin figure. The spin
values are integers, because we have an even number (6) of electrons of half-spin.

The list of possible radiative transitions between these lowest 6 levels of O*™ is:

A [um] Aij[s7']
88.356397 2.597x 1073
0.49326031 2.322x 107°
51.814541  9.632x 107
0.49602952  6.791 x 1073
0.23216635 2.255x 107!
0.16608090  1.450 x 10*2
0.50082404  2.046 x 1072
0.23321132  6.998 x 10~
0.16661496  4.260 x 1072
0.43644361  1.685x 1070
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The transition from the 1522522p2 D, state (i = 4) to the 1522522p2 3P, state ( j=3)
is the famous [OIII] A = 0.5007 um “forbidden line” often observed in hot ionized
nebulae such as planetary nebulae. The difference between the 4 = 0.5007 um and the
A =0.5008 um listed in the table is due to the wavelength in air being shorter than the
wavelength in vacuum.

The term “forbidden line” is a bit misleading. It suggests that selection rules do not al-
low this radiative transition, while in fact it only means that there is no dipole transition
possible. Instead a quadrupole transition is possible, but the A;; for such quadrupole
transitions are extremely small compared to “normal” radiative transitions.

7.3.3 Databases for atomic lines, levels and rates

The atomic levels and radiative transitions, as well as the collisional transition rates,
have been measured and reported in countless scientific papers. If you are interested
in a very specific case and you know exactly which levels and lines you are look-
ing for, you can look up these data in the respective papers. But often this is rather
impractical, in particular if you want to include many lines. Fortunately there are
websites where these data have been bundled in databases that you can query. Many
atomic lines are listed in The Opacity Project' (TOP) and The Iron Project’ (TIP).
Analytic formulae for the collisional rates with free electrons were derived, for in-
stance, by Van Regemorter (1962, Astrophysical Journal 136, 906) and Allen (1973,
Astrophysical Quantities, 3rd edition, Athlone Press London). Tabulated collisional
excitation coefficients can be found for instance at the website of Dima Verner®. But
a more complete set of atomic data, including collisional rates, can be obtained from
the CHIANTI database®. The data in the tables above (for O**) were taken from the
CHIANTI database.

7.4 Some examples of molecular species

The lines from molecules are usually not due to electronic transitions in the atoms, but
due to vibrations within the molecule as well as rotations of the molecule. These en-
ergy levels are typically at much lower energy than electronic ones, and hence molec-
ular lines are usually at longer wavelengths than atomic lines.

74.1 Rotational lines

Let us first look at the rotational levels of molecules, and let us focus on a simple
molecule such as CO. Since CO is a linearly shaped molecule (in contrast to, e.g. H,O
which is banana-shaped) the rotational quantum levels are very simple. There is only
one quantum number, J, which is the rotational quantum number, and at the same time
gives the total angular momentum of the molecule. The statistical weight is then, as
in the atomic case,

g=2J+1 (7.29)
The energies of the levels are:
#2
E = Z](J +1) (7.30)

where [ is the moment of intertia of the molecule. For CO this is I = 1.46 x 107,
The first few levels are thus:

1http ://cdsweb.u-strasbg. fr/topbase/topbase.html
2http ://cdsweb.u-strasbg. fr/tipbase/home.html
3http ://www.pa.uky.edu/~verner/exc.html
4http://www. chiantidatabase.org/
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i E (eV) g J
1 0.0000000000 1 O
2 0.0004767258 3 1
3 0.0014301549 5 2
4 0.0028602695 7 3
5 0.0047669889 9 4

where slight variation from Eq. (7.30) are due to the fact that the centrifugal forces of
the rotation may stretch the CO molecule a bit, and thus change its moment of intertia.

Radiative transitions can only take place between levels / — J — 1, because a photon
has spin 1, and thus angular momentum conservation requires the angular momentum
change to be +1. This means that the frequencies of these transitions from J — J — 1

obey:
n? n?
hy = Z[J(J+l)—(]—1)]] = 7] (7.31)

The frequencies of the lines are therefore increasing linearly with J. A very simple
spectrum indeed. This is called a rotational ladder. In numbers: for the CO molecule
the first four rotational lines are

j  Name A [um] Aij[s7']

1 J=1-0 2600.7576 7.203x 1078
2 J=2—1 13004037 6.910x 107’
3
4

J=3—2 866.96337 2.497x107¢
J=4-3  650.25151 6.126x107¢

D B W N~

These are lines in the millimeter wavelength range, and they are the typically the
strongest lines emerging from cold molecular interstellar and circumstellar material in
this wavelength domain.

One might wonder: why aren’t rotational lines of molecular hydrogen (H,) more
prominent than CO lines? After all, there is a lot more molecular hydrogen in such
clouds than CO (by roughly a factor of 10*). The answer is that H, is a symmet-
ric molecule, and therefore does not have a permanent electric dipole moment. This
means that if such a molecule rotates, it does not produce dipole radiation. It can only
produce quadrupole radiation, which have much smaller A;; rates. Molecular hydro-
gen lines are therefore very weak. Another issue is that H, is a much lower-mass
molecule with a much smaller moment of inertia (I = 4.7 x 1074!). According to
Eq. (7.30) this implies that the quantum levels are at much higher energies. Moreover,
because the lines are quadrupole lines, they require AJ = +2 (instead of AJ = +1
for asymmetric linear molecules). The longest-wavelength rotational line of H; is
A =28.24 um, i.e. the mid-infrared.

In the interstellar medium CO is by far the strongest emitter of millimeter and sub-
millimeter emission lines, simply because it is, after molecular hydrogen, the most
abundant molecule. Also in the far-infrared CO lines are often the most prominent
lines. But there are many other commonly observed molecules in this wavelength
range, too, for instance CS, OH, as well as triatomic linear molecules such as HCO*,
HCN etc.

But not all molecules are linear. The NH3 molecule, for instance, consists of an N
atom surrounded by three H atoms in a “symmetric top” configuration: The N atom
is above the plane spanned by the three H atoms. This introduces, in addition to J,
another quantum number, which we write as K. This K tells you whether the axis of
rotation is perpendicular to the plane spanned by the three H atoms, or at another axis.
The level diagram is shown in the margin figure.

The selection rules say that dipole radiation is only possible for AK = 0. In the level
diagram this means that you can radiatively decay only vertically downward. If you
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start in a state with K > 0, radiative decay will cascade down to the “backbone” state
for that value of K: the lowest-energy state for given K. The molecule will get “stuck”
there for a while. Eventually through collisional deexcitation it can reach the true
ground state. It can also decay radiatively through quadrupole radiation, though the
rates for that process are very low.

Molecules that are “asymmetric top”, such as H,O, are even more complex. H,O has
three rotational quantum numbers: J, K, K_. The J is the total angular momentum
while K, and K_ are the angular momenta around the axes of largest and smallest
moment of inertia. Water exists in two forms: ortho-water and para-water, depending
on whether the two hydrogen nuclei have their spin aligned (ortho, magnetic moment
m = % + % = 1) or opposite (para, magnetic moment m = % - % = 0). The ortho
version of water is a triplet (because of m = 1 giving g = 2m + 1 = 3 statistical
weight) while the para version of water is a singlet (because of m = 0 giving g =
2m + 1 = 1 statistical weight). Under thermodynamic equilibrium conditions at not
too low temperatures one therefore would expect that Nature has a ratio of ortho/para
water of 3/1. There are conditions, however, where a different ratio is expected.
There are no radiative transitions between ortho and para versions of water, and even
collisions are very inefficient at flipping the nuclear spin of one of the two hydrogen
atoms. In liquid water on earth it takes about an hour to equilibrate the ortho/para ratio
through collisions, while in the gas in interstellar space it can take many millions of
years. It is believed that in ice form (icy mantels on interstellar dust grains or the ice
in comets) it can be preserved nearly forever.

The ortho and para versions of H,O have different rotational level diagrams. For ortho-
water we have only levels with K_ + K, being odd, while for para-water we have only
levels with K_ + K, being even. The rotational diagrams for both versions of water
are shown in the margin figure (data taken from the LAMDA database in Leiden, see
below). You see that only para-water has a J = 0 ground state, while the ground state
of ortho-water has J = 1.

7.4.2 Ro-vibrational lines

In addition to rotating, molecules can also vibrate. Let us take again the example of
CO. The vibrational quantum number is v. The ground state is v = 0, J = 0. The
first vibrational state is v = 1, and the second v = 2 etc. Because molecules are
quite sturdy, the energy levels for these vibrational modes are much higher than for
rotational modes. For CO they are:

E; = hvoo (7.32)

where vy is the vibrational frequency, which for CO is vy = 6.4 X 10'3 Hz. This leads
to the first three energy levels to be 0 eV, 0.26 eV and 0.53 eV respectively. The line
frequency for the transition from v; — v; is

hV,’j = /’ZV()(U,‘ - Uj) (733)

This means that all transitions with Av = v; — v; have the same frequency. The transi-
tionsv=1—-0,v=2— 1,0v=3 — 2etc. are near 4 = 4.7um and are collectively
called the fundamental transition. The transitionsv =2 - 0,0 =3 - l,v =4 — 2
etc. are near A = 2.3um and are collectively called the overtone transition.

It is important to understand that, in addition to vibrating, a molecule can also still
rotate. These two things do not exclude each other. The selection rules say that any Av
is possible. In addition to that, in the same transition, the rotational quantum number
may change by AJ = —1, 0 or +1. For this reason these transitions are called ro-
vibrational lines. Example: Suppose your CO molecule starts fromv = 1, J = 4,
then it can radiatively decay tov = 0,J =3,ortov =0,J =4ortov =0,J = 5.
Rovibrational lines with AJ = +1 are called P-branch lines, those with AJ = 0 are
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called Q-branch lines and those with AJ = —1 are called R-branch lines. Since the
energy of the rotation (see Eq. 7.30) is added to that of the vibration (Eq. 7.32):

hZ
E,; = hvov + ZJ(J +1) (7.34)

we see that the AE for the P-branch and R-branch are not exactly 4vy(v; —v;), but they
get slightly modified by the second term in Eq. (7.34). I say “slightly”, because the
second term in Eq. (7.34) is typically very small compared to the first term. Yet, this
slight shift of the line due to the AJ is clearly discernable in the spectrum: instead of
just a single fundamental line, there will be the fundamental line for the Q-branch, a
rotational ladder toward short wavelength for the R-branch and an inverse rotational
ladder for the P-branch. The idea with the R branch is that in addition to the energy
gained from the Av = —1, also a bit of energy is gained from AJ = —1, leading to
a slightly more energetic photon. In contrast, for the P-branch, a small fraction of
the energy gained from the Av = —1, is invested (and thus lost) in spinning up the
molecule (AJ = +1), leading to a slightly less energetic photon.

A very peculiar phenomenon happens for the R-branch for large J: A vibrating CO
molecule has a slightly larger moment of inertia than a non-vibrating one, because
due the vibration the atoms are, on average, slightly further apart. This means that the
rotational energy levels for v = 1 are slightly smaller than those for v = 0. For large J
this has the effect that the ladder of the R branch reaches some minimum wavelength
and then turns back toward longer wavelength. This leads to a strong clustering of
rovibrational lines near this turn-back point. This is called a bandhead.

7.4.3 Databases for molecular lines, levels and rates

Like with the atomic data, you can find information about the lines, levels and rates
in papers. But also in this case there are databases on the web that you can make
use of. For rotational lines in the (sub-)millimeter regime the LAMDA database’ in
Leiden is very useful as it contains easy-formatted ascii files with levels, lines, rates
as well as collision rates in tabulated form. However, that database is focussed on ro-
tational lines only, and of 32 of the most common molecules. The Cologne Database
for Molecular Spectroscopy (CDMS)® has line lists for 641 molecules, including rovi-
brational lines, but no collisional rates. The JPL molecular spectroscopy database’
is also based on line lists. The HITRAN database® provides accurate line lists for
atmospheric research, but these data are also often used in astrophysics.

The variety of molecules and the variety of conditions under which they are studied
is so large that these databases cannot be fully complete. You may sometimes need to
dig out the data for your molecule of interest yourself from the relevant papers.

Note that sometimes in these databases the energy is written in the unit cm™!. To
convert to erg just multiply by hc.

7.5 The line profile function
7.5.1 Doppler broadening: Thermal case

The simplest form of line broadening is broadening caused by the thermal motion
of the gas particles. If a molecule has a line at frequency v; in the rest frame of the
molecule, then it will experience a little doppler shift if the particle moves with respect
to the observer. For thermally moving particles the velocity distribution projected

5http ://www.strw.leidenuniv.nl/-moldata/
6http ://www.astro.uni-koeln.de/cdms
Thttp://spec. jpl.nasa.gov/

8http ://www.cfa.harvard.edu/hitran/
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along the line of sight toward the observer is

2
P(v,) = exp (— = ) (7.35)

2
204

1
o \2n

where o7 is the single-directional variance of the velocity distribution given by

/kT
2 _ 2\ —
ol = /(UX — (7.36)

where k is the Boltzmann constant and m is the mass of the molecule. Note that this is
a factor of V3 smaller than the perhaps more familiar \/<v_2 = 3kT /m formula. This
is because we focus on just one of the three spatial directions. With this distribution
of velocities the line profile becomes

P(v) =

—v.)2
v V’)] (7.37)

exp|—
Yith \/7—T ( Yith

where vy, 1s the thermal line width given by

v [T
Yo = V22 = M 22 (7.38)
C C m

In the radiative transfer community this is often written, equivalently, as

c Ay —v)?
= exp|—-————— 7.39
601 = xp( po (7:39)
with
2kT ¢
a=—=—Yin (7.40)
m Vi

where a is the line width in cm/s.

It is important to keep in mind that the doppler broadening depends on the mass of the
molecule that is emitting the line. For heavy molecules this broadening is less than for
lightweight molecules.

7.5.2 Doppler broadening: Microturbulence

Another source of randomized doppler shift could be microturbulence. The term “mi-
croturbulence” is a bit vaguely defined. Turbulence is the phenomenon of pseudo-
randomly moving parcels of gas or fluid on top of some average large scale flow
pattern. The word “microturbulence” can also be called “subgrid turbulence: it is the
turbulence on spatial scales smaller than the smallest grid cell size. This small-scale
turbulence can not be treated numerically as moving fluid elements. Instead we must
treat it as a velocity dispersion. A reasonable approximation for the probability dis-
tribution of velocities is a Gaussian distribution as given in Eq. (7.35). The variance
of the particles o2 is now, however, independent of the molecular mass, and is also
not related to temperature. One must have knowledge of the strength of the micro-
turbulence to know what this o2 is. In other words: one must have a good model for
the turbulent velocity dispersion. Typically in the radiative transfer community people
write this in terms of a contribution to the a in Eq. (7.39):

(7.41)
with

2kT 2
agp = — and Aurb = \/§<U;2¢,mrb> = \/;@lzurb> (7.42)

m
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7.5.3 Collisional broadening

Collisional broadening, also called impact pressure broadening, can be best under-
stood with an example. Suppose we have a CO molecule that is vibrating with its fun-
damental frequency v; in the rotational ground state. The vibration is then described
by a positional offset of the O atom that is proportional to cos(2rv;#). If the vibrating
molecule is left alone for a very long time compared to a single oscillation cycle, and
assuming that it does not experience a transition to another quantum state, then the
oscillation can be described well by this cosine function, and the Fourier transform
in time produces a delta function around the frequency v; to very high approxima-
tion. However, if collision events at random times disturb the phase of the oscillation,
the Fourier transform will broaden, as the oscillation no longer describes a perfectly
phase-stable cosine.

When such an imperfectly oscillating molecule interacts with radiation, it will be sus-
ceptible not only to photons with the exact frequency hvy, but also photons at slightly
offset frequencies, according to the broadning of the timelike Fourier transform of the
oscillation. The corresponding line profile is called the Lorentz profile (or Cauchy
profile or Breit-Wigner profile). It is given by

l Vi,coll
TV =v)?+y;

i,coll

P(v) = (7.43)

where ;o 1s the collisional broadening parameter, which has the same units as the
frequency. This parameter is not easy to calculate from first principles, in contrast to
the doppler broadening. This is because the precise way by which the collision per-
turbs the vibration or rotation of a molecule depends very much on the details of the
collision process, including which type of molecule is the collision partner. We typi-
cally rely on tabulated values. In the HITRAN database (Section 7.4.3), for instance,
the y; con value for each line is given, for a pressure of 1 atm and a temperature of 296
K. We can scale this to another pressure and temperature using the following scaling

relation:

To\"
Yicol (P T) = Yicon(po: To) L (—°) (7.44)
po\T

with po = 1 atm and Ty = 296 Kelvin.

The linear dependence on p can be understood if we assume that collisions are in-
finitely short duration events. If we keep the temperature constant, then the number of
collisions each molecule will experience per second increases linearly with the den-
sity.

The exponent n; gives the temperature-dependence, and it is also listed in the HITRAN
database. Typically the value of n; is somewhere between 0.5 and 1.0. A value of
n; = 0.5 would mean that, if we assume an ideal gas law of p = nkT and we keep the
number density n constant but vary the temperature 7', we get y; con VT . This makes
sense because the velocity of the molecules scales as \NT , meaning that y; .o scales
simply with the collision rate. In reality, however, the speed at which the collisions
occur also affects y; ¢on1, Which is why »; typically deviates from 0.5.

Note that the HITRAN database gives two values of the collisional broadning param-
eter: y;seir and y; 4. The first one is for collisions of the molecule with molecules of
the same kind, while the second one is for collisions of the molecule with a standard
mixture of air in the Earth’s atmosphere. The formula for broadening for a mixture of
air and molecule is then:

Ty

P=Ps Yiselt(Po, To)&} (—) (745)
po)\T

Yicot(p, T) = {%’,air(l?o, To)

where p; is the partial pressure of the molecule itself.
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Collisional broadening occurs mainly in rather dense environments such as planetary
and stellar atmospheres. In planetary atmospheres it dominates usually by a consid-
erably amount over doppler broadening. In interstellar and circumstellar gases such
as molecular clouds or protostellar/protoplanetary disks, collisional broadening rarely
plays a role.

7.54 Natural broadening

Natural broadening can be understood in much the same way as collisional broaden-
ing, even though its origin is very different. Consider again the oscillating molecule.
Now, instead of perturbing it with a collision, we perturb it by the emission or absorp-
tion of a photon, i.e. the transition to another quantum state. The finite duration of
the oscillation between two successive radiative or collisional (de-)excitations means
that its Fourier transform is not a perfect delta-function, but instead broadened. It is
essentially the Heisenberg uncertainty principle, in which the finite duration in time
At and the uncertainty in energy AE are related via AEAt ~ h/2n. The resulting line
profile is, again, a Lorentz profile (Eq. 7.43). This time, however, the width y; ny 1S
easy to calculate from the uncertainty principle:

1

—— 7.46
2 At ( )

Yinat =

where At is the average life time of the state. If we have predominantly spontaneous
decay, given by the Einstein coefficient A;, then At = 1/A;.

Natural broadening rarely plays a role in molecular lines. But for atomic lines, in
particular in UV and X-ray, it can play a role.

7.5.5 Combining Lorentz and GauB: The Voigt profile

If we have multiple sources of broadening, then the combined effect is the convolution
of them. Combining the thermal and microturbulent broadening yields a Gaussian
profile with width:

1 v =)’ . —
dic(v) = N2 exp|— - with YViG = A /yi!lh + Y b (747)

which is equivalent to Eq. (7.41). Combining natural and collisional broadening yields
again a Lorentz profile with

1 YiL
mT(v— Vi)2 + yiL

¢iL(v) = with YiL = Yicoll T Vinat (7.48)

But combining this Lorentz profile with a Gaussian profile requires us to actually
carry out the convolution of the two profiles, which is not trivial:

¢i(v) = f $ic(V )i (vi +v—V)dV (7.49)
0

This is called the Voigt profile. In a radiative transfer code it is rather numerically
expensive to carry out such an integral each time the codes needs to evaluate the line
profile. Humlicek (1982,J. Quant. Spectros. Radiat. Transfer 27,437) developed a fast
numerical procedure to approximate the Voigt profile very accurately. This procedure
was refined by Schreier (1992, J. Quant. Spectros. Radiat. Transfer 48, 743-762). A
fortran code for this procedure is publically available®. In this Fortran-77 function,
called HUMLICEK, the function A(x, y) is evaluated, where

V=V and y= YiL
YiG YiG

X =

(7.50)

ghttp ://www.op.dlr.de/oe/ir/voigt.html
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The full Voigt line profile ¢;(v) can be found from A(x, y) through:

h(x,y)
\/7_T7’i,G

¢i(v) = (7.51)

The figures in the margin show that if the thermal and microturbulent broadening
are weak compared to the collisional and/or natural broadening (y;g/yiL < 1), we
have a profile that is virtually identical to the Lorentz profile. But if the thermal
and microturbulent broadening are strong compared to the collisional and/or natural
broadening (y;g/viL > 1), the Gaussian line profile dominates near the line center,
but sufficiently far from the line center the wings of the Lorentz profile will always
re-appear.

In very rarified media, such as the interstellar medium or circumstellar disks, the dis-
tance from the center of the line where this happens may, however, be so far that we
can safely ignore this effect. It is, however, important to check this on a case-by-case
basis. For very dense media, such as stellar or planetary atmospheres, the Gaussian
component is usually too small to be important.

7.6 Some features of line formal transfer: Case of LTE

If we have a medium that is dense enough, most atoms and/or molecules will experi-
ence so many collisions per second, that their level populations are thermal. We speak
of Local Thermodynamic Equilibrium (LTE). In this case the radiative transfer is rel-
atively straightforward, if the gas temperature (and of course also the number density
of the molecule in question) is known everywhere. The formal transfer equation is
Eq. (7.9) and the extinction and emissivity are given by Eq. (7.13) and Eq. (7.11), re-
spectively. Taking into account the velocity-dependence of the line profile due to the
Doppler-shift (see Eq. 7.20) the formal radiative transfer equation becomes

n-VIi(x,n) = j,(x,n) — a,(x,n)l,(x,n) (7.52)

If we make a spectrum of some object with this equation, the line shape that we com-
pute will have a certain width Av which is partly due to the intrinsic width of the line
(Section 7.5) and partly due to contributions to the line from gas parcels moving at
various line-of-sight velocities (let us call this the “dynamic line width”). The larger
our field of view that we use to compute the spectrum, the larger is the chance of pick-
ing up emission from different velocity parcels. But even if we have a very narrow
beam, then parcels with different velocities that are behind each other (along the same
line of sight) will contribute to the spectral line width, or create complex-shaped lines.

Because of this relation between frequency and velocity, observed (or predicted) line
spectra are often plotted with velocity v on the x-axis instead of frequency v.

The intrinsic thermal line width depends on the mass m of the molecule (Eq. 7.40),
but the dynamic line width does not. This means that if one could measure line width
of lines from different molecular or atomic species, one could conceivably distinguish
between the thermal and dynamic contributions. We can relate this to the isothermal
sound speed c¢; = +/kT /u of the gas, where u is the mean molecular weight:

P L Y (7.53)
m m

If the molecule has a mass m =~ 2u the thermal line broadning is equal to the isothermal
sound speed. For m > 2u the thermal line width of that molecule is substantially
smaller than the sound speed of the gas. So if you want to measure the line-of-sight
velocity of some parcel of gas with a tolerance much smaller than the gas sound speed
(typically when you wish to measure speeds of subsonic flows), then it is useful to
take a heavy molecule to do so. Example: CO has mass m = 28m, (with m,, the
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proton mass), while the mean molecular weight of a typical hydrogen-helium mixture
is 4 = 2.3m,. This means that, for CO, the thermal line width is a = 0.4 ¢,, while for
H; quadrupole lines it is a = 1.5 ¢;. This means that, for measuring velocities, CO is
better than H,.

7.6.1 Integrated line spectrum from an accretion disk

Many object are surrounded by gaseous disks. For instance: the dust+gas disks sur-
rounding many young stars. These disks are differentially rotating according to the
Kepler profile. The gas close to the star rotates at higher speeds and has a higher tem-
perature than the gas on outer orbits. If we see the disk face-on, the orbital velocities
cannot be observed using doppler shift measurement. But if the disk is at some incli-
nation, then the line shape is a typical “double peaked line profile”. The emission from
the inner disk produces much of the line wings while the emission from the outer disk
produces the line center. Since most disks have an outer edge at some reasonable dis-
tance from the star, there will be gas missing at very low doppler shift. This gives the
slight dip at the line center of the spectrum (which creates the double-peaked shape).
Tilting the disk to ever more edge-on orientations makes the entire line shape broader.
Until, of course, the inclination is so large, that the outer regions of the disk start to
obscure the view to the star and the inner disk regions.

7.6.2 P-Cygni line shape from a stellar wind

With doppler shifts, the resulting observed line shapes can become pretty complex.
Consider a star with a spherically symmetric stellar wind. Let us assume that the wind
accelerates away from the star (dv.(r)/dr > 0) and that the temperature drops with
radius (dT'(r)/dr < 0). The gas near to the star is hot and moves subsonic. It produces
a bright and broad emission line. But the outer regions of the wind are cooler and they
move at a blue-shifted velocity along the line of sight toward the observer. This means
that the outer regions of the wind produce a blue-shifted narrow absorption line on the
wide emission line. This leads to an asymmetric double-peaked line shape, with the
blue shoulder weaker than the red shoulder. This is called a P-Cygni line shape.

7.6.3 Inverse P-Cygni line shape from an infalling envelope

A very similar line shape can be obtained from an infalling envelope. If matter falls
toward a star, it accelerates as it comes closer to the star, and it might also become
hotter. This produces a very broad (thermal + dynamic) line emission feature, but the
cool outer non-accelerated regions of the infalling envelope produce a narrow absorp-
tion dip in the line. This also leads to a non-symmetric double-peaked line shape, but
this time the red shoulder is weaker while the blue shoulder is stronger. This is called
an inverse P-Cygni line shape.

7.7 Non-LTE line transfer: The optically thin case

In the very tenuous environment of interstellar space, collisions between atoms or
molecules are often not frequent enough to keep the level populations thermal. Spon-
taneous radiative decay can then be strong compared to the collisional re-population,
so that the population of the higher levels may drop below the LTE value, while those
of the lower levels may exceed the LTE value. In other words, the problem has become
non-LTE. The simplest non-LTE line transfer problem is one in which the medium is
assumed to be optically thin at all wavelength, so that any photons emitted by a gas
parcel at one point do not re-excite a level somewhere else in the cloud. This elim-
inates the radiative coupling between different regions of the cloud, so that the level
populations can be calculated at every point in the cloud independently, i.e. locally.

116

Flux

Flux

Line emission from a Keplerian circumstellar disk

outer disk edge

systemic velocity

inner disk edge

/

0 km/s

V [km/s]

Line emission from a stellar wind (P-Cygni shape)

Absorption from
cool outer region

Emission from
hot inner region

/

systemic velocity
I

T
0 km/s

V [km/s]

Line emission from infalling gas (inverse P-Cygni shape)

Flux

Absorption from
cool outer region

systemic velocity
I

Emission from

hot inner region

/

T
0 km/s

V [km/s]



