
To calculate the level populations we must solve the equation of statistical equilib-
rium. For every level i we demand that the rate at which atoms/molecules are being
(de-)excited out of level i is equal to the rate at which level i is being re-populated by
(de-)excitation from other levels:

∑

j>i
n jA ji −

∑

j<i
niAi j +

∑

j

[

n jC ji − niCi j
]

= 0 (7.54)

This must be true for all levels i, and therefore Eq. (7.54) constitutes a coupled set of
Nlev linear equations with Nlev unknowns (where Nlev is the number of levels of the
atom/molecule), or in other words: a matrix equation. This can be solved using, for
instance, an LU-decomposition and backsubstitution method (see e.g. the Numerical
Recipes book).

The temperature and density-dependence is “hidden” in the Ci j coefficients via
Eqs. (7.6, 7.8) and via the temperature-dependence of Ki j(T ). In particular, because
of Ci j = NKi j(T ) (Eq. 7.6), the Ci j is linear in N, the number density of the collision
partner (typically e− for hot atomic gases and H2 and He for cold molecular gases).

For a given temperature, one can define the critical number density Ncrit as the den-
sity above which the collisions are so frequent, that they keep the populations close to
their LTE values, while below which there are substantial deviations from LTE. This
depends typically also on the level at which you look: some of the lower states might
be LTE while the higher states might display strong non-LTE behavior. The critical
density is therefore a somewhat vaguely defined concept, but it can nevertheless be
extremely useful for estimating from the value of the gas density and the gas temper-
ature whether we risk having non-LTE effects or whether LTE is a good assumption.
In addition to that, it allows us to use line intensities and line intensity ratios are a
(admittedly somewhat indirect) probe of the density: If we see line ratios that are
inconsistent with LTE populations, then this indicates that the density is lower than
the critical density for that molecule and that pair of levels. This is an important ca-
pability, because normally in the optically thin regime we can only measure column
densities (i.e. densities integrated along the line of sight).

7.8 Non-LTE: The full problem
7.8.1 The equations for full non-LTE line transfer

In addition to photon emission, photons can also be absorbed by lines. Given a radia-
tion field Iν(x, n) the number of photons absorbed by some transition j→ i is:

∮

αi j,ν(n)
Iν(n)
hν

dν

#
1
hνi j

∮

αi j,ν(n)Iν(n)dν

=
1
hνi j

∮ hνi j
4π
(NjB ji − NiBi j)φi j(ν, x, n)Iν(n)dν

= (NjB ji − NiBi j)
1
4π

∮

φi j(ν, x, n)Iν(n)dν

= (NjB ji − NiBi j)Ji j

(7.55)

with Ji j is the line profile integrated mean intensity defined as

Ji j ≡
1
4π

∮

φi j(ν, x, n)Iν(n)dν (7.56)

where φi j(ν, x, n) is
φi j(ν, x, n) = φi j(ν, v(x)) (7.57)
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with φi j(ν, v(x)) given by Eq. (7.20).

If we include this rate into the statistical equilibrium equation Eq. (7.54) then we
obtain

∑

j>i

[

n jA ji + (n jB ji − niBi j)J ji
]

−
∑

j<i

[

niAi j + (niBi j − n jB ji)Ji j
]

+
∑

j!i

[

n jC ji − niCi j
]

= 0

(7.58)

which is the full form of the statistical equilibrium equation for non-LTE line transfer.
This is a local equation (to be solved at each location separately), but it has a global
character due to the dependency on Ji j and J ji which can only be calculated using full
radiative transfer.

As usual, we can write the Ji j and J ji in Eq. (7.58) as a Lambda-operator acting on the
source function:

Ji j = Λi j[S i j] (7.59)

where the source function for the line i→ j is

S i j =
jν(n)
αν(n)

=
niAi j

n jB ji − niBi j
(7.60)

Note that the source function S i j is independent of ν, at least over the small frequency
range across the line i → j. It has a single value for each line. For LTE line transfer
this becomes:

S i j
∣

∣

∣LTE = Bνi j(T ) (7.61)

The Lambda Operator Λi j can written as

Λi j[.] =
1
4π

∫

dν
∮

dΩφi j(ν, x, n)Λν,n[.] (7.62)

whereΛν,n[.] is the angle-dependent Lambda Operator (which gives the intensity Iν(n)
for given source function S ν(x).

Eq. (7.58) then becomes
∑

j>i

[

n jA ji + (n jB ji − niBi j)Λ ji[S ji]
]

−
∑

j<i

[

niAi j + (niBi j − n jB ji)Λi j[S i j]
]

+
∑

j!i

[

n jC ji − niCi j
]

= 0

(7.63)

This is now the formulation of the full non-LTE line radiative transfer problem in
terms of a Lambda Operator.

7.8.2 Assumptions underlying the equations

In writing Eq. (7.59) and Eq. (7.63) we made an important assumption: that Ji j only
depends on S i j. But Eq. (7.62) contains an integral over S ν(x) whereever φi j(ν, n) ! 0.
If there is another line k → l with frequency νkl very close to νi j, then this may also
contribute to S ν(x) and thus to Eq. (7.62). We would then have Λi j not only depend
on S i j = S (νi j) but also on S kl. In writing Eq. (7.59) we made the implicit assumption
of non-overlapping lines, i.e. that none of the line interfere radiatively with any of the
other lines. In principle the treatment of overlapping lines is straightfoward, at least in
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the simplest of methods such as Lambda Iteration (Section 7.9 below). But for more
sophisticated methods it can become tricky. The extreme case in which many lines
overlap to form a kind of pseudo-continuum is called line blanketing.

Another assumption we tacitly made is that of complete redistribution. The assump-
tion is that the velocity of any atom or molecule will be completely randomized be-
tween successive photon absorption or emission events. In other words: if at some
instant in time an atom moves (through its thermal motions) with some velocity v
toward the observer, its line is doppler shifted to the blue, and it may thus prefer-
entially absorb photons that are blueshifted. The complete redistribution assumption
says that before that atom/molecule absorbs or emits another photon, the thermal col-
lisions have already moved the atom into another direction. This assumption is very
important to keep the problem of line transfer tractable. If this were not the case, then
we would have to solve an equation such as Eq. (7.63) not just for each location on the
grid, but also for each velocity vector. Instead of a 3-D problem in x we would then
have a 6-D problem in x, v. Unfortunately, complete redistribution is not always guar-
anteed. In particular in the interstellar medium, if we use sub-grid-scale turbulence
as a simple broadening factor in the line profile (see Section 7.5.2), the time it takes
for a typical turbulent eddy to “turn over” (i.e. randomize its velocity) is much larger
than the typical 1/Ai j for the line transitions. Nevertheless the complete redistribution
assumption is still used for such problems, simply because the full treatment of non-
LTE line transfer with partial redistribution would be computationally unfeasible in
full 3-D.

7.9 Lambda Iteration for line transfer
The most straightfoward method of solution of this non-LTE line transfer problem is
Lambda Iteration (see Section 4.4). It is simply the iteration between solving the set
of equations Eq. (7.58) for given Ji j, and computing Ji j for given ni. Or, starting from
Eq. (7.63), we can write Lambda Iteration as:

∑

j>i

[

nm+1j A ji + (nm+1j B ji − nm+1i Bi j)Λ ji[S mji]
]

−
∑

j<i

[

nm+1i Ai j + (nm+1i Bi j − nm+1j B ji)Λi j[S mi j]
]

+
∑

j!i

[

nm+1j C ji − nm+1i Ci j
]

= 0

(7.64)

where the m-index is the iteration counter. After each iteration you solve the coupled
set of linear equations Eq. (7.64) to obtain a new set of populations {nm+11 , · · · , n

m+1
Nlevels}.

In practice the frequency integration of Eq. (7.62) is done over small frequency win-
dows covering each line:

Λi j[.] =
1
4π

∫ νi j+∆ν

νi j−∆ν
dν

∮

dΩφi j(ν, x, n)Λν,n[.] (7.65)

where ∆ν must be chosen large enough that the line always stays fully within the
window, even when doppler shifted as a result of gas motion within the model. This
means that you will have to find out what the largest velocity is inside the model box,
and assure that the shifted line, including its broadened wings, fits well inside the
window. Note that formally each line is infinitely wide since there is no ν where the
line profile is exactly zero. But typically one can find a distance from the line where
the line profile function is sufficiently small that it no longer contributes.

It is also useful to choose∆ν not too large, because the frequency integral in Eq. (7.65)
is, in the computer, a discrete sum over a frequency grid. If ∆ν is very large, then that
would require a lot of frequency points to sum over. The spacing of the frequency
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points must be small enough that they nicely resolve the intrinsic line profile φi j(ν).
Taking, for instance, a window ∆ν that is 100× the intrinsic line width, requires about
400 frequency points at the very least, if not more. This also means doing the full
formal transfer for 400 frequencies per line for each iteration of the Lambda Iteration
scheme. This is hugely numerically costly. Therefore, a wise (not too small, not too
big) choice of ∆ν is crucial to keep the problem doable.

This also shows us that non-LTE line transfer problems in which the gas experiences
large differential velocities (i.e. large velocity differences between different locations
in the model) will be very numerically costly to solve using this Lambda Iteration
method, even for the moderately optically thick case.

7.10 ALI for lines: The MALI method of Rybicki & Hummer
In Section 4.4 we learned that the Lambda Iteration method can be rather slow in con-
vergence, and that a better method exists: the Accelerated Lambda Iteration method.

To generate an ALI method out of Eq. (7.63) we introduce the usual splitting of the
Λ-operator:

Λi j = Λ
∗
i j + (Λi j − Λ

∗
i j) (7.66)

such that (cf. Eq. 7.62):

Λ∗i j[.] =
1
4π

∫

dν
∮

dΩφi j(ν, x, n)Λ∗ν,n[.] (7.67)

whereΛ∗ν,n is, for instance, the diagonal part of the Lambda Operator or its tri-diagonal
part.

Let us for convenience assume Λ∗ν,n to be the diagonal of the full Lambda Operator,
so that Λ∗i j is just a scalar instead of a non-local operator. We can then work out the
following local expression:

Λ∗i j[S i j] = Λ
∗
i jS i j = Λ

∗
i j

niAi j
n jB ji − niBi j

(7.68)

Since in Eq. (7.63) this is then multiplied with (niBi j − n jB ji) let us work out:

(niBi j − n jB ji)Λ∗i j[S i j] = (niBi j − n jB ji)Λ∗i j
niAi j

n jB ji − niBi j
= −Λ∗i jniAi j (7.69)

Therefore, if we insert Eq. (7.66) into Eq. (7.63) ans we use Eq. (7.69), we obtain:
∑

j>i

[

n jA ji(1 − Λ∗ji) + (n jB ji − niBi j)(Λ ji − Λ∗ji)[S ji]
]

−
∑

j<i

[

niAi j(1 − Λ∗i j) + (niBi j − n jB ji)(Λi j − Λ∗i j)[S i j]
]

+
∑

j!i

[

n jC ji − niCi j
]

= 0

(7.70)

This is almost identical to Eq. (7.63), only with the following substitions:

Ai j → Ai j(1 − Λ∗i j) (7.71)
Λi j → (Λi j − Λ∗i j) (7.72)

And so the ALI iteration scheme, for a local operator, becomes:
∑

j>i

[

nm+1j A ji(1 − Λ∗ji) + (nm+1j B ji − nm+1i Bi j)(Λ ji − Λ∗ji)[S mji]
]

−
∑

j<i

[

nm+1i Ai j(1 − Λ∗i j) + (n
m+1
i Bi j − nm+1j B ji)(Λi j − Λ∗i j)[S

m
i j]

]

+
∑

j!i

[

nm+1j C ji − nm+1i Ci j
]

= 0

(7.73)
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This is the Multilevel Accelerated Lambda Iteration (MALI) scheme of Rybicki &
Hummer (1991, Astronomy& Astrophysics 245, 171) for non-overlapping lines, for a
local operator and without a background continuum. One can relatively easily include
Ng-acceleration (Section 4.4.7) on the level populations to speed things up more.

Eq. (7.73) is a coupled set of linear equations that has to be solved at each location
for each iteration. We were in fact quite lucky that Eq. (7.73) remained linear in
the populations! The reason why this is not trivial is that in line transfer the opacity
αν(x, n) changes from one iteration to the next. In Section 4.4 we worked out the ALI
method under the assumption that the αν(x) stays constant with iteration, in which case
the linearity of the problem is evident. With αν(x, n) changing in line transfer this is
not evident at all. But because of the miraculous cancellation of the (niBi j − n jB ji)
factor in Eq. (7.69) all the non-linearity fortunately got cancelled out. It turns out
that if you include complexities such as a background continuum by the dust that
this cancellation does no longer take place. Please refer to the paper by Rybicki &
Hummer for how the MALI method solves this problem.

7.11 The two-level atom problem: Line “scattering”
People often talk about “scattering” when they are talking about non-LTE line transfer.
This is not real scattering that we know from scattering off dust particles. It is the
process of excitation and subsequent de-excitation of a level pair that has the netto
effect of redirecting a photon into a different direction. Mathematically this process
is similar to true isotropic scattering (see Section 4.1), and it is for this reason that
the word “scattering” is used. However, this often leads to confusion. In fact, the
mathematical correspondence is only valid in the case of a two-level system. If we
have multiple system, the excitation to a higher level could be followed by a two-step
de-excitation, meaning that a high-energy photon is absorbed while two lower energy
photons are being emitted. This is no longer similar to scattering.

Let us work out a simple example, assuming that the medium is at rest (i.e. v(x) = 0).
We have just two levels: “u” (up) and “d” (down), so that nd = 1 − nu. Let us first
assume that the collision rates Cud = Cdu # 0 for simplicity. Then the statistical
equilibrium equation becomes

nuAud + (nuBud − ndBdu)Jud = 0 (7.74)

which is just one equation (rather than a coupled set). The emissivity and extinction
coefficients are (Eqs. 7.11, 7.13):

jud,ν =
hνud
4π

NnuAudφ(ν) (7.75)

αud,ν =
hνud
4π

N(ndBdu − nuBud)φ(ν) (7.76)

where N is the total number density of the two-level atom. With Eq. (7.74) we can
then write

jud,ν = αud,νJud (7.77)

which is the line equivalent of the isotropic scattering formula Eq. (4.2).

The main difference is now that Jud is a frequency-integrated mean intensity, inte-
grated over a line profile. This means that photons can hop from one frequency to
the other within the line profile upon each scattering event. This is reminiscent to
the “scattering”-nature of the absorption+re-emission events in dust thermal radiative
transfer (see Section 5.4.4), but now only over a tiny frequency domain just around
the line. It means that, like with the absorption+re-emission, the scattering “random
walk” can take spatial steps of different distance, depending on which frequency (and
thus which opacity) the photon happens to be at a given moment.
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Another difference with the isotropic scattering problem of Section 4.1 is that in the
two-level atom problem the opacity αud,ν will be dependent on Jud: if we have a very
large Jud, then most of the atoms will be in the “up” state, meaning that there are
fewer “down” state atoms to excite. This reduces αud,ν. However, as long as Jud is
small enough that nu ' 1, then αud,ν can be considered to be constant.

There are examples in Nature which behave nicely like a two-level atom. For instance,
the Ly-α line that is emitted after recombination. If an electron recombines with a
proton to form a hydrogen atom, it typically is first in an excited state. Through
radiative decay the atom decays to ever lower levels, until eventually reaching the 1s
ground state. If it reaches the 2p state before that, that state can only decay by sending
out a Ly-α photon. However, this Ly-α photon can quickly excite any ground-state
hydrogen atom nearby. In fact, in many cases the optical mean free path for a Ly-
α photon is extremely small compared to the typical scales of the system. It will
therefore almost immediately be reabsorbed, exciting the electron in that atom from
1s to 2p. That state will live for a short time and radiatively decay again, sending
out, again, a Ly-α photon, and the entire procedure starts all over again. De-facto the
Ly-α photon will scatter many times before either escaping from the system or being
destroyed by a collisional de-excitation or two-photon de-excitation. Since the optical
depth in the Ly-α line is often so high that the chance of escape is much lower than the
chance of collisional or two-photon decay, it is often reasonable to use the on-the-spot
approximation: assuming that the 2p state simply does not decay via Ly-α. But the
validity of the on-the-spot approximation requires verification on a case-by-case basis.

7.12 Photon escape probability and the escape probability method
Even though the concept of “scattering” is strictly speaking only valid for a two-
level atom, it can be very useful for multi-level atoms as well, to get a feeling for the
problem. In line transfer energy (or photons) can be transported via the lines. But
if the optical depth is very large in all the lines that are appreciably emitting light,
then the transport of the energy is hampered substantially. It is then useful to look at
the various ways by which radiation can nevertheless escape. One way is simply by
multiple scattering. But another way is the escape in the line wings: if, occasionally, a
photon happens to be emitted at a frequency far enough away from the line center that
the optical depth of the cloud at that frequency is smaller than unity, then the photon
can escape. To be more precise: the probability of a photon to escape from a cloud
with optical depth τν is:

pesc,ν =
1 − e−τν
τν

(7.78)

This is called the monochromatic escape probabilty. If we integrate this over the full
line profile we obtain the escape probability for that line:

pesc =
∫ 1 − e−τν

τν
φ(ν)dν (7.79)

with of course 0 ≤ pesc ≤ 1.

This insight can be used to contruct a very simple (though of course very approximate)
method of non-LTE line transfer: we simply assume that

Λi j = (1 − pesc,i j) (7.80)

i.e. that, for each allowed pair (i, j) the Lambda Operator Λi j is a diagonal operator
with pesc,i j on the diagonal. Inserting this into the statistical equilibrium equation
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Eq. (7.63),
∑

j>i

[

n jA ji + (n jB ji − niBi j)(1 − pesc, ji)S ji
]

−
∑

j<i

[

niAi j + (niBi j − n jB ji)(1 − pesc,i j)S i j
]

+
∑

j!i

[

n jC ji − niCi j
]

= 0

(7.81)

and using Eq. (7.60) then leads to
∑

j>i
n jA ji pesc, ji −

∑

j<i
niAi j pesc,i j +

∑

j!i

[

n jC ji − niCi j
]

= 0 (7.82)

Thus, if we have a good way of computing the escape probabilities pesc,i j, then we
can solve Eq. (7.82) and thus find the level populations. This is called the escape
probability method.

The catch is, however, that Eq. (7.78) is only an approximation. One should in fact
integrate Eq. (7.78) over all directions:

pesc,ν =
1
4π

∮

1 − e−τν(n)

τν(n)
dΩ (7.83)

which involves an integral along a ray from the point of interest to infinity for each
direction n:

τν(n) =
∫ ∞

0
αν(x + sn, n)ds (7.84)

Furthermore, the assumption that one can replace Λi j with (1 − pesc,i j) is also a very
approximate one. The escape probability method completely ignores the fact that
radiative energy can be transported from one region of the cloud to the next. Never-
theless, the escape probability method turns out to be quite helpful and usually gives
a reasonable approximate answer. And because it is much faster computationally than
the full MALI iteration, it is quite often used.

7.13 The Large Velocity Gradient method of Sobolev
Very closely related to the escape probability method described above is the Large
Velocity Gradient (LVG) method, also called the Sobolev method. The idea here is
that a photon can escape from the line due to differences in velocity between adjacent
regions. Suppose a photon is emitted at position x from a gas parcel with velocity
v. Now it travels to a neighboring position x′ where the gas velocity is v′. Let n be
the unit vector pointing from x into the direction x′. The doppler shift between these
two points is now ∆νi j = νi jn(v′ − v)/c. If this doppler shift is larger than the local
line width, then the photon suddenly finds itself “free” because the opacity is then
suddenly very low as a result of the line having been doppler shifted away from the
frequency of the photon. A velocity gradient can thus lead to photon escape.

The LVG method is then identical to the escape probability method, but with pesc,i j
caused by the velocity gradient. If we use Eqs. (7.83,7.84) then this is essentially
automatically included in Eq. (7.84).

If we, however, do not want to explicitly integrate Eq. (7.84), then we can also ap-
proximate this, for the case of large enough velocity gradients, as:

τi j,LVG =
Ai jc3

8πν3i j

N
|dv/ds|

(

gi

g j
n j − ni

)

(7.85)

where |dv/ds| is the velocity gradient. In principle this has to be computed in all
directions and averaged.
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7.14 Some common line radiative transfer phenomena
7.14.1 Radiative pumping

Normally the very high levels of an atom or molecule are not populated because the
thermal collisions cannot populate them. However, a common phenomenon in line
transfer of cool gases in the presence of a hot light source (e.g. a star) is that the hot
photons from the light source can radiatively excite the higher levels of the atom or
molecule. Subsequently, these radiatively (or collisionally) decay and thus populate
ever lower levels. In other words: they cascade down. This may thus lead to line
radiation that is not expected on just the basis of thermal considerations of the gas in
question. This process is called radiative pumping.

7.14.2 Recombination lines

If atoms get ionized by a hot light source (e.g. an O-star), then recombination can take
place to the higher levels of the atom; levels that do not get thermally excited usually,
because they are so high up. In that case you also get cascading, and thus line emission
from rather high levels, even for relatively low-temperature gas. For hydrogen this
may even lead to radio recombination lines, because the energy differences between
the levels at principal quantum numbers close to 100 are at radio wavelengths.

7.14.3 Masers/lasers

If two levels lie very close together in frequency, and if the higher levels get somehow
pumped, then the cascading may lead to populations of these two levels that are far
from LTE. It may even lead to population inversion in which

n jB ji − niBi j < 0 for j > i (7.86)

which leads to negative opacity. As a result you get runaway emission, i.e. laser emis-
sion. For millimeter wavelength radiation this is called maser emission. Formally
this could easily lead to absurdly strong emission, if you simply integrate the for-
mal transfer equation. However, energy is conserved. This means that the process
is self-limiting: if the emitted radiation becomes too strong, the de-population of the
upper level is so strong that it reduces the masering effect. This is a highly non-linear
process, which makes it very hard to model numerically. Most line radiative transfer
codes cannot properly handle masers/lasers; special methods have to be used.
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