
Chapter 9

Radiative transfer in planetary
atmospheres

Warning: This chapter is just a very rough introduction to planetary atmospheres.

Since the discovery of planets around other stars than the sun, the issue of how at-
mospheres of such “exoplanets” would look when observed remotely has risen to the
forefront of astrophysics. From the Earth’s atmosphere we can learn of course a lot,
but it is not trivial to predict what an atmosphere of arbitrary composition and structure
would look like.

Let us first discuss some general considerations and then focus on some of the techni-
cal issues involved.

9.1 Hydrostatic equilibrium
Suppose we have a rocky planet of mass Mp and radius Rp, and we study only a thin
atmosphere on top. We take z to be the coordinate such that z = 0 means the surface.
By assuming the atmosphere to be geometrically thin we assume that z ! Rp. The
hydrostatic equilibrium equation is then

dp(z)
dz
= −gρ(z) (9.1)

where p(z) is the pressure and ρ(z) the density of the gas. The gravitational surface
acceleration g is assumed to be constant by virtue of z ! Rp. We can integrate this
equation from some value z to “∞”:

∫ ∞

z

dp(z′)
dz′

dz′ = −g
∫ ∞

z
ρ(z′)dz′ (9.2)

Which leads to
p(z) = gσ(z) (9.3)

with σ(z) the column of gas above z:

σ(z) =
∫ ∞

z
ρ(z′)dz′ (9.4)

This means that the pressure experienced by some parcel of gas does not change even
if we heat up the atmosphere: only its location z will change. Because of this phe-
nomenon it may be more pragmatic to use σ or equivalently p as a vertical coordinate
than z. Indeed, in atmospheric physics you will see usually the pressure p as a vertical
coordinate rather than z. Note that p increases when z decreases and vice versa. So
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with this new philosophy (having p as a coordinate), now z is a function of p. The
hydrostatic equilibrium equation (Eq. 9.1) now becomes

dz(p)
dp

= −
1
gρ(p)

(9.5)

which integrates to

z(p) = −
∫ p

psurf

dp′

gρ(p′)
(9.6)

where psurf is the surface pressure (pressure at z = 0).

For most atmospheres we can take the ideal gas law as a good approximation of the
equation of state:

p =
ρkBT
µ
= ρc2s (9.7)

where µ is the mean molecular weight and cs is the isothermal sound speed. For the
Earth’s atmosphere this is µ % 29mp with mp the proton mass.

If we have, as the simplest example, an isothermal atmosphere (T =constant), then the
hydrostatic equilibrium equation in the form Eq. (9.1) integrates to

p(z) = psurf exp
(

−
z
Hp

)

(9.8)

with the pressure scale height Hp given by

Hp =
c2s
g
=
kBT
gµ

(9.9)

Equivalently, the hydrostatic equilibrium equation in the form Eq. (9.6) integrates to

z(p) = −Hp (ln p − ln psurf) (9.10)

An isothermal atmosphere is therefore an exponential atmosphere.

In general planetary atmospheres are far from isothermal. It is in fact one of the
challenges we will discuss in this chapter how to compute T (z) or equivalently T (p).

9.2 Radiative energy transport in an atmosphere
9.2.1 Basic two-stream transport equations

Let us focus for now on the radiative transfer equations for the thermal balance of an
atmosphere. We have already seen in Section 3.7 how the basics of radiative transfer in
plane parallel atmospheres work. We have also seen in Section 4.4.2 that a reasonably
good approximation is the two-stream approximation. Let us write out these equations
under the simple assumption that scattering is not important:

1
√
3
dI+,ν
dz

= ρκν[Bν(T (z)) − I+,ν] (9.11)

−
1
√
3
dI−,ν
dz

= ρκν[Bν(T (z)) − I−,ν] (9.12)

The mean intensity is then

Jν(z) =
I+,ν(z) + I−,ν(z)

2
(9.13)

while the netto flux is
Fν(z) =

2π
√
3
[I+,ν(z) − I−,ν(z)] (9.14)
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With this definition of the flux we can derive the following differential equation for
Fν(z):

dFν(z)
dz

= 4πρκν[Bν(T (z)) − Jν(z)] (9.15)

which is simply a way of writing flux conservation.

If we have radiative equilibrium at every z, then we have
∫ ∞

0
κνJνdν =

∫ ∞

0
κνBν(T )dν ≡ κP(T )

σSB

π
T 4 (9.16)

For the frequency-integrated flux F(z) =
∫ ∞
0 Fν(z)dν this means

dF(z)
dz
= 0 (9.17)

i.e. we would have a constant flux. If the planet has a netto heat source from below,
then this sets the flux at the bottom of the atmosphere, and the rest follows by F(z) =
constant. A very young planet which is still cooling down would be such a case.

However, for older planets such as the Earth the flux from below is negligibly small.
The above equations would thus predict F(z) = 0, and hence T (z) = 0. Clearly this is
not the case. The reason: Irradiation by the Sun.

9.2.2 Irradiation by the star

Since the stellar (solar) radiation field is highly an-isotropic, it might not be a good
idea to treat it with the two-stream approximation. The easiest way to include irradia-
tion by the Sun is to treat the Sun’s light as a separate component of the radiation field.
Since radiative transfer is a linear theory, you can always split the intensity Iν into

Iν = I∗ν + Iatν (9.18)

where I∗ν is taken to be the stellar radiation and Iatν the radiation field produced by the
atmosphere itself through thermal emission.

Let the stellar flux as seen at the planet’s location be

F∗ν =
L∗ν
4πd2

(9.19)

where d is the distance of the planet (e.g. Earth) to the star (e.g. Sun). This flux enters
the atmosphere at some angle ϕ with the surface, with ϕ = π/2 meaning that the sun
is at zenith and ϕ = 0 meaning sunset or dawn. The netto irradiative flux is then

F∗,irrν = sin(ϕ)F∗ν = sin(ϕ)
L∗ν
4πd2

(9.20)

Since the flux experiences extinction due to absorption by the atmosphere, we can
write

F∗,irrν (z) = F∗,irrν exp
(

−
τν(z)
sinϕ

)

(9.21)

where τν(z) is the vertical optical depth from z to infinity (more precisely: to z = zmax):

τν(z) =
∫ ∞

z
ρκνdz′ (9.22)

The radiative equilibrium equation (Eq. 9.16) now becomes
∫ ∞

0
κνJνdν +

1
4π

∫ ∞

0
κνF∗νdν = κP(T )

σSB

π
T 4 (9.23)

For the frequency-integrated flux this means

F(z) + F∗,irr(z) = constant (9.24)

For an old planet, without internal heat, this would mean that F(z) = −F∗,irr(z).
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9.2.3 Diurnal variations and the deviation from radiative equilibrium

Even in an old planet’s atmosphere there is not necessarily perfect radiative equilib-
rium. The Earth rotates and its gets day and night. During the day ϕ changes. If at
every moment in time there were to be radiative equilibrium we would freeze to death
during the night and become overheated during the day. The air in the atmosphere is a
certain heat capacity, meaning that it takes a while before enough radiative energy is
absorbed to adapt the temperature to the radiative equilibrium value. Often this time
scale is longer than the diurnal variation of the irradiation. Then there are also the
hydrodynamic circulations of air over the planet’s surface, allowing heat to be trans-
ported not only via radiation but also via gas flows. We will here, however, not discuss
this further.

A reasonable estimate of the average temperature structure of the atmosphere can be
obtained by inserting an average irradiation flux at the top.

9.3 A simple 1-layer model with 2 grey opacities
Suppose we have an atmosphere that is completely transparent at all wavelengths,
except in one well-defined layer located at some pressure p with with width ∆p > 0.
This layer corresponds to a ∆σ in the following way:

∆σ =
∆p
g

(9.25)

where both ∆σ and ∆p are defined to be > 0. Now let us assume that at stellar
wavelengths the absorption opacity is κ∗ and at the infrared wavelength emitted by
the atmosphere the absorption opacity is κat. For both cases we treat the opacity as
grey, i.e. we assume that the opacity effectively is a step function, being κν = κ∗ for
λ ≤ 2µm and κν = κat for λ > 2µm, where 2µm is our estimate of the boundary
between “stellar” and “atmospheric” photons. For convenience we assume that the
scattering opacity is always zero. We also write all fluxes as positive, whether they
point upward or not; the context should make clear in which direction they point. The
star irradiates the atmosphere under an angle ϕ with projected frequency-integrated
irradiation flux F∗,irr = sin(ϕ)F∗. Below the layer, only

Fbelow∗,irr = F∗,irre
−τ∗ (9.26)

of that radiation is left to irradiated the surface of the planet, with

τ∗ =
∆σκ∗

sin(ϕ)
(9.27)

We assume that the planet’s surface absorbs this radiation fully, and re-radiates it as a
Planck function at the temperature of the surface Ts, so that the surface flux upward
is:

Fs = σSBT 4s (9.28)

The layer apparently absorbs

Q∗+ = F∗,irr − Fbelow∗,irr = F∗,irr (1 − e
−τ∗) (9.29)

amount of energy per second (unit: erg/s/cm2) from the stellar radiation. It also ab-
sorbs radiation from the surface:

Qs
+ = Fs (1 − e−τs) (9.30)

where
τs = τat =

√
3∆σκat (9.31)

where the
√
3 comes in through the two-stream approximation.
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If we assume radiative equilibrium the temperature of the layer must be such that it
emits as much as it absorbs. In the two-stream approximation the emitted flux from
the layer in both directions is

Fat =
2
√
3
σSBT 4at

(

1 − e−τat
)

(9.32)

A more accurate flux would be:

Fat = σSBT 4at
(

1 − e−τat
)

(9.33)

but this is only 15% different from the two-layer one. Let us take the more accurate
one (Eq. 9.33). Radiative equilibrium in the layer means:

2Fat = Q∗+ + Qs
+ = F∗,irr (1 − e−τ∗) + Fs (1 − e−τs) (9.34)

Radiative equilibrium at the surface means:

Fs = Fat + Fbelow∗,irr = Fat + F∗,irre
−τ∗ (9.35)

Eqs. (9.34,9.35) forms a set of coupled equations. We can eliminate Fs and we solve
for Fat to obtain

Fat = F∗,irr
(

1 − e−(τ∗+τat)

1 + e−τat

)

(9.36)

Inserting this into Eq. (9.35) we obtain

Fs =
(

1 + e−τ∗
1 + e−τat

)

F∗,irr (9.37)

Now that we know what the flux balance is, we can calculate the corresponding tem-
peratures from Eqs. (9.33, 9.28):

Tat =
[

Fat
σSB

1
1 − e−τat

]1/4

(9.38)

and

Ts =
[

Fs
σSB

]1/4

(9.39)

This simplest possible model of an atmosphere is really “to be taken with a grain of
salt”, because it ignores a lot of effects. For instance, it completely ignores scattering,
and more importantly, it ignores convection. The latter tends to produce a troposphere,
where the temperature structure is very close to adiabatic. This example model is
therefore really nothing more than a simple toy model to demonstrate the basics of
radiative equilibrium in an atmosphere.

9.4 Opacities in planetary atmospheres - a very brief overview
Atmospheric opacities can be divided into continuum opacities due to aerosols, water
(or other liquid) droplets and Rayleigh scattering offmolecules, and line opacities due
to the most common molecules.

As we learned from the chapter on line transfer: lines are generally very thin, covering
just a tiny part of the spectrum. Therefore, in the interstellar medium the energy
budget is often dominated by continuum opacities due to dust. However, in planetary
atmospheres dust is often settled to the surface, and clouds of condensables might at
least partially disappear, leaving a clear sky. In that case the lines from molecules take
over the energy balance. Because of the high pressures in planetary atmospheres (at
least, compared to interstellar medium pressures) the line wings of the Lorentz profiles
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of the lines are rather broad. Additionally in the infrared there can be literally millions
of lines from H2O, CO2 and other molecules. All in all the lines therefore cover a
substantial part of the spectrum, and thus act in a way similar to what dust continuum
opacities would do in lower-density environments.

In the chapter on line transfer we dealt with the case where Tgas was known, but the
level populations could be non-LTE. In planetary atmospheres we are mostly lucky
that the populations are usually in LTE, due to the high density. But the temperature
Tgas is typically not known in advance. The complication of non-LTE is now replaced
by the complication of non-radiative-equilibrium. For continuum opacities we know
how to solve for the temperature (see Chapter 5). For line transfer we have not yet
treated this problem.

In principle we could use similar techniques as we did for the dust continuum. We
could, in a way, treat the gas opacity κν as some kind of “dust opacity” and use the
same methods as discussed in Chapter 5) to solve for the gas temperature. However,
this is not so easy.

First of all, the opacities of the gas κν depend on temperature. For the method of
Bjorkman &Wood this is bad. With an iteration scheme one can get around this, but it
remains tricky. For Lambda-Iteration-type schemes this is not a problem, and it could
easily be done.

But the other problem is more problematic: the shape of κν as a function of ν is so
wild, i.e. it changes so dramatically with ν, that one would need millions of frequency
points νi to sample the opacity appropriately. This would simply be computationally
too expensive.

There are several ways by which one can get around this. Here I list a few:

• Simple Rosseland and Planck means: The simplest is just to compute the Rosse-
land and Planck mean opacities. This is not very accurate in atmospheres which
are optically thin in certain wavelength ranges.

• Opacity sampling: Take a random set of frequencies νi and treat the spectrum
as being fully defined by these frequencies. If the number of frequency points is
large enough, then these points represent sufficiently well the range of opacities
encountered.

• Opacity distribution functions: We define a set of rather broad ranges in fre-
quency. For each range we sample how many times an opacity between κ + ∆κ
occurs, so that we have a probability distribution function p(κ) for each fre-
quency range.

Details for how radiative transfer in planetary atmospheres is done can be found in:

1. Raymond Pierrehumbert: “Principles of Planetary Climate”

2. Sara Seager: “Exoplanet Atmospheres”
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