Exercises for Radiative Transfer in Astrophysics (SS2012)

Cornelis Dullemond Exercise sheet 3

Lambda Iteration

1. Multiple isotropic scattering in a 1-D plane-parallel atmosphere

Consider a semi-infinite $(-\infty < z \le 0)$ 1-D vertical plane-parallel atmosphere with a constant extinction coefficient: $\alpha = 1$ for $z \le 0$ (and $\alpha = 0$ for z > 0). The albedo $\eta \equiv 1 - \epsilon$ is also constant. The value of the Planck function is taken to be B = 1 for convenience. Let us use the *two-stream approximation* for the Lambda operator. At the top of the atmosphere we have an open boundary: Radiation can escape freely and no radiation enters the atmosphere. Let us put the bottom boundary at z = -10 and put $I_+ = 1$ as the bottom boundary condition. Use 100 gridpoints in z.

- (a) Write a computer program that solves this radiative transfer problem using Lambda Iteration.
- (b) Let us choose $\epsilon = 0.5$. Start with the mean intensity J(z) = 0 as initial guess. Plot J(z) for consecutive iterations.
- (c) Now do the same for $\epsilon = 10^{-1}$. Notice that the convergence is slower.
- (d) Now try $\epsilon = 10^{-3}$. What do you see?

For all exercises, please always do the following:

- Make an electronic document (DOC or PDF) which includes your text concerning the exercises, as well as figures belonging to it.
- Upload your document and your computer program to the Moodle.