
Chapter 4

What makes radiative transfer
hard, and how to solve it - An
introduction

If we would, at all times and at all locations, know the values of jν and αν, then what
we have learned in Chapter 3 would be enough to understand the topic of radiative
transfer. Of course, some technical details still have to be refined, and we have to
discuss all the “input physics” such as opacities and abundances of constituents of the
medium. But those would be manageable. When you hear that radiative transfer is a
very challenging topic, the reason is that in many cases we do not know the values of
jν and/or αν in advance. The radiation field Iν(x, n) that we wish to compute can affect
the medium in such a way as to modify jν and αν. We are then faced with a “chicken
or egg” effect: to compute Iν(x, n) we need to know jν(x) and αν(x), and to compute
jν(x) and αν(x) we need to know Iν(x, n).

And to make things worse: we cannot solve this problem for each ray separately,
because a change in jν(x) will affect the formal transfer equation for all rays passing
through x, i.e. rays with different direction vectors n. This is illustrated in the figure
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in the margin. For our observation we are interested in the formal radiative transfer
along ray A, which we call the line of sight. We focus in this illustration on the jν and
αν in the little cell at the center of the cloud. In addition to ray, A, also rays B and C
pass through that cell. The intensity along those rays can therefore also affect jν and
αν in the cell. This ray coupling effect means that we are forced to solve the radiative
transfer problem for all rays at once. This is the true challenge of radiative transfer.

This challenge can also be expressed in terms of radiative cell coupling: the emission
generated in one volume element of a cloud (a “cell”) can travel to the other side of
the cloud and affect the conditions in a cell there. Information is thus exchanged be-
tween regions of the cloud that are distant from each other. For example: the radiative
cooling of one region can cause the radiative heating of another. While this may seem
like a separate problem from the ray coupling problem, it is actually the same. The
cell coupling and ray coupling problems are just two faces of the same problem.

Radiative cell coupling

4.1 The simplest example of ray coupling: Isotropic scattering
Let us consider the simplest radiative transfer problem in which such a ray coupling
plays a role. Suppose we have a medium consisting of small dust particles that can
scatter radiation in arbitrary directions. This process is called isotropic scattering,
because the outgoing direction of a photon has, by assumption, no dependence on
the direction of the photon before the scattering event. Let us also assume that the

26



dust particles do not absorb nor emit any of the radiation, and let us focus on a single
frequency ν (we omit any ν indices for notational convenience). Let us also assume
that somewhere (either inside or outside of the cloud) there is a source of light, which
we will treat as an initial value for the intensity at the start of rays emanating from that
source.

The formal radiative transfer equation is then, as usual,

n · ∇I(x, n) = j(x) − α(x)I(x, n) (4.1)

The emissivity j is responsible for injecting radiation into the ray, which occurs
through scattering. Since all photons that experience a scattering event have the same
chance to be scattered into the direction n, we only need to know how much radiation
is being scattered per unit volume and time: we do not need to worry about the angular
dependence of the incoming radiation. This means that the emissivity becomes:

j(x) = α(x) 1
4π

∮

I(x, n) dΩ = α(x)J(x) (4.2)

where in the last step we used the definition of the mean intensity J (Eq. 2.26). This
allows us to write the formal transfer equation as

n · ∇I(x, n) = α(x)
[

1
4π

∮

I(x, n′) dΩ′ − I(x, n)
]

(4.3)

or in more compact form:

n · ∇I(x, n) = α(x) [J(x) − I(x, n)] (4.4)

Eq. (4.4) clearly demonstrates the “chicken or egg” effect that makes radiative transfer
so difficult: We need to know J(x) before we can integrate Eq. (4.4) along any ray, but
we need to know I(x, n) for all directions n to compute J(x).

4.1.1 The culprit: Multiple scattering

We can formulate this “chicken or egg” problem in another way by following light
back to its source. The photons that we observe when we look at the cloud may
have been scattered into the line of sight by a dust particle. Before that event, these
photons moved along another ray. But they might have in fact be scattered into that
ray by another scattering event, etc. Photons can scatter multiple times before they are
scattered into the line of sight. This is called the multiple scattering problem.

Note: The problem of isotropic multiple scattering can be considered a benchmark
problem of radiative transfer. Understanding how to tackle this problem provides a
solid basis for understanding the more complex radiative transfer problems in the next
chapters. We will therefore spend considerable time on this admittedly fairly idealized
problem.

Multiple scattering can be regarded in terms of recursion: Each successive scattering
event can be associated to one “chicken-egg” cycle: To compute J at some particular
point x0 along the line of sight we would need to perform integrations of the formal
transfer equation along all rays that go through x0, i.e. varying n all over 4π steradian.
However, to be able to integrate the formal transfer equations along those rays we
will need to know J at other locations x ! x0 along these rays, these involve again
performing the transfer equation along all rays that go through x, varying n all over
4π steradian, etc.

Multiple scattering
Light source

τ=5

How to solve this?

Exact analytical solutions to this problem are exceedingly rare. For a semi-infinite
homogeneous plane-parallel atmosphere being irradiated from the top, a solution is
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given by Chandrasekhar’s H-functions theory (from Chandrasekhar’s book “Radia-
tive Transfer”, 1950/1960, Dover). However, for most practical cases a numerical
approach is required, which is a challenge because of the high dimensionality of the
problem.

In this lecture we will discuss several classes of numerical methods to tackle this and
related problems. The main three classes of methods are: (1) Monte Carlo methods,
which simulate the multiple scattering process directly, (2)Discrete ordinate methods,
which solve the problem by dividing all coordinates, including the angles and the
frequency, into discrete grid points or grid cells, and (3) Moment methods, including
the diffusion method, which treat the angular and/or frequency domain in terms of its
moments. We will discuss all these classes of methods in detail in later chapters, but
we will already briefly introduce them in this chapter.

4.1.2 For τ $ 1: The single scattering approximation

For the case when the optical depth of the cloud is very low we can make an approx-
imation that makes the problem solvable either analytically or at least numerically
with little computational cost: We can then ignore the effect of multiple scattering,
and assume that every photon that scatters into the line of sight experienced no scat-
tering evens before that. This is the single scattering approximation. This approxima-
tion becomes better the lower the optical depth of the cloud is. Since, as we showed
above, each successive scattering event is associated with one “chicken-egg” cycle of
Eqs. (4.1, 4.2), the single scattering approximation allows us to limit our efforts by:

1. integrating the formal transfer equation for all rays connecting the light source
to any of the points along the line of sight,

2. computing the jν along the line of sight

3. integrating the formal transfer equation along the line of sight to the observer.

Light source
Single scattering approximation

τ=0.01

While the procedure of integrating the transfer equation along all rays connecting
source and line of sight may still be difficult analytically, or require quite a bit of
computation time numerically, the effort is manageable.

4.1.3 A worked-out example of single scattering

To get a better feeling for the practical issues, let us work out a concrete example of
single scattering. Let us assume that we have a star of radius R∗ and temperature T∗
that radiates as a perfect blackbody emitter. Surrounding it is a spherically symmetric
cloud of dust. The density of the cloud of dust is given by the following formula:

ρ(r) = ρ0
(

r
r0

)−2

for r ≥ r0 (4.5)

and zero inside of r0. The scattering opacity is assumed to be independent of fre-
quency: κν = κ and independent of density or temperature. We will take it constant.
We assume that the radial optical depth between the star and a point at distance r is
small enough that the single scattering approximation can be safely made:

τν(r) = κν
∫ r

r0
ρ(r′)dr′ $ 1 (4.6)

Let us assume that r0 ' R∗ so that in good approximation we can treat the star as a

Spherical envelope around a star

point source. The flux from the star is:

Fν(r) =
Lν
4πr2

with Lν = 4πR2∗πBν(T∗) (4.7)

28



For the computation of the scattering emissivity jν we need the mean intensity Jν,
which is for this case:

Jν =
Fν
4π

(for exactly outward-pointing radiation) (4.8)

so that
jν(r) = αν

Fν
4π
=

1
(4π)2

κνLνρ0r20
1
r4

(4.9)

Now we must integrate this emissivity along a line of sight. Let us choose a line of
sight with an impact parameter b > r0. Let us choose our coordinate s along the ray
such that s = 0 is the closest approach. We can then write

r =
√
b2 + s2 (4.10)

The integral of the formal transfer equation along the line of sight then becomes:

Iobsν (b) = 1
(4π)2

κνLνρ0r20
∫ +∞

−∞

ds
(b2 + s2)2

=
1

(4π)2
κνLνρ0

r20
b3

∫ +∞

−∞

dx
(1 + x2)2

=
1
32π

κνLνρ0
r20
b3

(4.11)

assuming no background intensity. On an image we will thus see the scattered light
of the envelope decay as 1/b3 away from the star. Since the ρ ∝ 1/r2 density profile
is what you would expect from a stellar wind (ballistic outflow), this is in fact a rea-
sonably realistic model for reflection nebulae around stars with dusty stellar winds.
In reality, as we shall see in Chapter 6, the isotropic scattering approximation is not
always a good approximation for light scattering off dust particles. But the 1/b3 decay
of scattered light is, also in the case of anisotropic scattering, not a bad approximation.

4.1.4 Including absorption and thermal emission

While the multiple scattering problem formulated so far is an extremely challenging
problem to solve, it is somewhat idealized because we assumed that the dust parti-
cles do not absorb any radiation (they only scatter) nor do they thermally emit any
radiation. For water droplet clouds in the Earth’s atmosphere at optical wavelengths
this is a reasonable approximation. But there are many cases where some amount of
thermal absorption and emission is present in addition to the scattering. In the Earth’s
atmosphere this is, for instance, the case for aerosols. In astrophysics there are many
situations where both absorption/emission and scattering play a role. The dust in the
interstellar medium has this property, and so does the dust in circumstellar disks.

When we include absorption, then at every frequency ν we have two kinds of opacity:
absorption opacity and scattering opacity:

αν = α
abs
ν + α

scat
ν (4.12)

We define the albedo as:
ην =

αscatν

αabsν + α
scat
ν

(4.13)

In some fields of physics a symbol α is used for albedo, but we already reserved that
for the extinction coefficient, in accordance with stellar atmosphere radiative transfer
conventions. Conversely we can define the photon destruction probability as:

εν =
αabsν

αabsν + α
scat
ν

(4.14)
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This quantity is often used in non-LTE radiative transfer theory in stellar atmospheres.
We clearly have

εν = 1 − ην (4.15)

Also the emissivity jν can be seen as consisting of two contributions:

jν = jemisν + jscatν (4.16)

where jemisν is the emissivity corresponding to the absorption coefficient αabsν . Note
that in this case no special symbols are defined for their ratios.

The source function is
S ν =

jν
αν
=
jemisν + jscatν

αabsν + α
scat
ν

(4.17)

We can rewrite this into the form

S ν = εν
jemisν

αabsν
+ ην

jscatν

αscatν

= ενS absν + ηνS scatν

(4.18)

For isotropic scattering we have jscatν /α
scat
ν = Jν. If the emission is thermal emission at

some temperature T , then we have jemisν /αabsν = Bν(T ). Then we can write the source
function as

S ν = ενBν(T ) + ηνJν
= ενBν(T ) + (1 − εν)Jν

(4.19)

where the latter way of writing is the standard used in the community of stellar atmo-
spheres. The transfer equation remains (cf. Eq. 3.13):

dIν
ds
= αν

[

S ν − Iν
] (4.20)

(where the explicit reference to s- and n-dependency is omitted for notational conve-
nience) which now becomes, if we insert Eq. (4.19):

dIν
ds
= αν

[

ενBν(T ) + (1 − εν)Jν − Iν
]

(4.21)

For εν = 1 we retrieve Eq. (3.11). For εν = 0 we retrieve Eq. (4.4). Equation (4.21) is
thus a true mix of the thermal emission/absorption and the scattering problem.

How does this change the nature of the problem? Clearly, if εν = 1, assuming that
we know what the temperature T is everywhere, then there is no “chicken or egg”
problem. The problem is most profound for εν = 0. So the problem is of moderate
complexity for 0 < εν < 1. If εν = 0.5, for instance, a photon can scatter not more
than a few times before it will be destroyed by absorption. Information can thus be
transported, on average, not farther than a few mean free paths before the radiation
field “forgets” that information. Whereas for εν = 0 a photon will scatter as long as
it takes to escape, and may thus traverse macroscopic distances through the cloud, for
εν = 0.5 radiative information travels only a few mean free paths from its origin before
it is deleted. As we shall see in later sections and chapters, the closer εν is to 0, the
harder the radiative transfer problem gets.

4.2 Monte Carlo methods (Introduction)
One of the main methods for solving the multiple scattering problem is called the
Monte Carlo method. It is named after the town of Monte Carlo, famed for its Grand
Casino. As with gambling, Monte Carlo methods are based on chance. The idea is to
follow the path of a photon from one scattering event to the next, and to use random
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