Radiative transfer in astrophysics (Master/PhD Course)
Wintersemester, 2017
For the moment, see the lecture web page of 2013 if you want to read some of the lecture material used the last time this lecture was held. Some new material may be added, and some may be dropped..
C.P. Dullemond
Notice: The lecture and exercise class on Fiday, November 24, is cancelled due to an overlapping event at the MPIA (science slam).
Introduction
Radiative transfer is one of the cornerstones of astronomy. Any radiation we receive from an astrophysical object has been processed by that object through radiative transfer. Therefore, in order to interpret observations in terms of the geometry, temperature, dynamics and composition of that object, we must be able to calculate how this radiative transfer process works.
Unfortunately, radiative transfer can be rather complicated, both physically as well as technically. In practice this often means that not all information that is encoded in observations is being retrieved. The goal of this lecture is to learn more about radiative transfer, its difficulties and the methods and computer codes to solve radiative transfer problems. A particular emphasis will be on hands-on exercises using a radiative transfer code.
Topics to be covered (provided it fits in the time):
- learn about basics of radiative transfer theory and the problem of non-locality: LTE versus non-LTE.
- learn more about radiative processes, beyond the basics what
one typically learns in a course on theoretical astrophysics:
- Dust continuum radiative transfer (emission, absorption, scattering; Mie scattering, Rayleigh scattering)
- Gas line radiative transfer (LTE, non-LTE; atomic, forbidden, recombination, molecular rovibrational, molecular rotational)
- Photoionizing radiation, photodissociating radiation
- Thompson scattering, compton scattering
- Polarized radiation
- Quantum-heating of tiny particles
- learn about the different kinds of transfer problems these processes lead to, and what their difficulties are (typically related to the non-locality of these problems)
- learn about numerical methods for solving LTE and
non-LTE radiative transfer problems:
- Methods for integrating the formal transfer equation, including subtleties with complex gridding
- Methods for solving non-LTE transfer problems (Monte Carlo versus discrete ordinate methods; Lambda Iteration, Accelerated Lambda Iteration, Ng-acceleration)
- Approximate methods (Escape probability, Large Velocity Gradient)
- learn to work with an actual radiative transfer code.
We will use the RADMC-3D code for that:
- Basics of the code
- How to set up problems
- How to gather the required opacities and atomic/molecular data
- How to create spectra, images, visibilities (for interferometers) etc.
- How to post-process these and compare to observations
- learn about various astrophysical applications:
- Stellar / planetary atmospheres
- Molecular clouds
- HII regions
- Protoplanetary disks
Organization
This course will be given in English. It consists of 2 hours per week of lecture and 2 hours per week of exercises, most of which will be actual computer exercises in which you will use a radiative transfer code to solve "real" problems and compare with real observed data.
Time and venue
The lecture takes place on Fridays, from 14:15-16:00 in the kleine-Hoersaal in Philosophenweg 12. The exercise class takes place on the same day, 16:15-18:00 in the same room. Note: These times were changed (it used to be planned for earlier in the day but I decided to change it to the above mentioned time).
Requirements
Basics of theoretical astrophysics are desireable. You must have basic experience with using computers on the linux/unix command line, compiling programs in C or fortran and making plots with any graphical software of your chosing (e.g. gnuplot, IDL, Python), and programming simple programs or scripts.
Lecture notes
Here the script will appear as we go (the order of topics may change!).
- Chapter 1: Introduction
- Chapter 2: Radiative quantities
- Chapter 3: Formal transfer equation
- Chapter 4: Solving the full RT equation
- Chapter 5: Radiative transfer in dusty media
- Chapter 6: Scattering off dust particles
- Chapter 7: Line radiative transfer
Exercises + Computer Problems
Here the exercises and computer exercises will be published. Please bring your own laptop to the exercise class. During the first exercise class we will install some of the required software for the course.
- Exercise sheet 1, plus a test program to check if your gfortran compiler works
- Exercise sheet 2
- Exercise sheet 3
- Exercise sheet 4, plus the twostream.f90 code
- Exercise sheet 5, plus the problem_setup.f90 code, and the dust opacity file dustkappa_silicate.inp
- Exercise sheet 6
- Exercise sheet 7, plus the new problem_setup.f90 code, and the new dust opacity file dustkappa_silicate.inp, and image_to_bmp.f90, and an example color table ct.inp
- Exercise sheet 8, and Makefile and make_ca_cs_g.f90
- Exercise sheet 9
- Exercise sheet 10
Literature
The lecture will not require additional literature. But good companion literature is:
- Rybicki and Lightman, "Radiative Processes in Astrophysics"
- Rob Rutten's: lecture notes on radiative transfer
- Sara Seager, "Exoplanet Atmospheres"
- Erika Boehm-Vitense, "Stellar Astrophysics Vol 2: Stellar Atmospheres"
- Wendisch and Yang, "Theory of Atmospheric Radiative Transfer"
- Dmitry Mihalas, "Stellar Atmospheres"
- Mihalas and Mihalas, "Radiation hydrodynamics"